K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

6 tháng 6 2019

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

14 tháng 10 2020

1) \(4x^2-7x-2=4x^2-8x+x-2=\left(4x^2-8x\right)+\left(x-2\right)\)

\(=4x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(4x+1\right)\)

2) \(4x^2+5x-6=4x^2+8x-3x-6=\left(4x^2+8x\right)-\left(3x+6\right)\)

\(=4x\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(4x-3\right)\)

3) \(5x^2-18x-8=5x^2-20x+2x-8=\left(5x^2-20x\right)+\left(2x-8\right)\)

\(=5x\left(x-4\right)+2\left(x-4\right)=\left(x-4\right)\left(5x+2\right)\)

4) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)

\(=xy\left(x+y\right)-y^2z-yz^2+x^2z-xz^2\)

\(=xy\left(x+y\right)+\left(x^2z-y^2z\right)-\left(yz^2+xz^2\right)\)

\(=xy\left(x+y\right)+z\left(x^2-y^2\right)-z^2.\left(x+y\right)\)

\(=xy\left(x+y\right)+z\left(x-y\right)\left(x+y\right)-z^2\left(x+y\right)\)

\(=xy\left(x+y\right)+\left(zx-zy\right)\left(x+y\right)-z^2\left(x+y\right)\)

\(=\left(x+y\right)\left(xy+xz-yz-z^2\right)=\left(x+y\right).\left[x\left(y+z\right)-z\left(y+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(x-z\right)\)

14 tháng 10 2020

1) 4x2 - 7x - 2 = 4x2 - 8x + x - 2 = 4x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 4x + 1 )

2) 4x2 + 5x - 6 = 4x2 - 8x + 3x - 6 = 4x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 4x + 3 )

3) 5x2 - 18x - 8 = 5x2 - 20x + 2x - 8 = 5x( x - 4 ) + 2( x - 4 ) = ( x - 4 )( 5x + 2 )

4) xy( x + y ) - yz( y + z ) + xz( x - z )

= x2y + xy2 - y2z - yz2 + xz( x - z )

= ( x2y - yz2 ) + ( xy2 - y2z ) + xz( x - z )

= y( x2 - z2 ) + y2( x - z ) + xz( x - z )

= y( x - z )( x + z ) + y2( x - z ) + xz( x - z )

= ( x - z )[ y( x + z ) + y2 + xz ]

= ( x - z )( xy + yz + y2 + xz )

= ( x - z )[ ( xy + y2 ) + ( xz + yz ) ]

= ( x - z )[ y( x + y ) + z( x + y ) ]

= ( x - z )( x + y )( y + z )

5) xy( x + y ) + yz + xz( x + z ) + 2xyz ( đề có thiếu không vậy .-. )

11 tháng 8 2018

Vụ này khoai à nha !

11 tháng 8 2018

\(b,9x^2+90x+225-\left(x-y\right)^2\)

\(=\left(3x+15\right)^2-\left(x-y\right)^2\)

\(=\left(3x+15-x+y\right)\left(3x+15+x-y\right)\)

\(=\left(2x+y+15\right)\left(4x-y+15\right)\)

6 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha: :

Link :   https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách

OK N

11 tháng 6 2018

Giải:

\(P=\left(xy+yz+xz\right)^2+\left(x^2-yz\right)^2+\left(y^2-xz\right)^2+\left(z^2-xy\right)^2\)

\(\Leftrightarrow P=x^2y^2+y^2z^2+x^2z^2+2xy^2z+2x^2yz+2xyz^2+x^4-2x^2yz+y^2z^2+y^4-2xzy^2+x^2z^2+z^4-2xyz^2+x^2y^2\)

\(\Leftrightarrow P=2x^2y^2+2y^2z^2+2x^2z^2+x^4+y^4+z^4\)

\(\Leftrightarrow P=\left(x^2+y^2+z^2\right)^2\)

\(\Leftrightarrow P=10^2\)

\(\Leftrightarrow P=100\)

Vậy ...

NV
11 tháng 12 2018

Để M xác định thì \(x,y,z\ne0\)

\(xy+xz+yz=0\Rightarrow\left\{{}\begin{matrix}\dfrac{xy}{z}+x+y=0\\\dfrac{xz}{y}+x+z=0\\\dfrac{yz}{x}+y+z=0\end{matrix}\right.\)

Cộng vế với vế ta được:

\(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}+2\left(x+y+z\right)=0\)

\(\Leftrightarrow M+2.\left(-1\right)=0\Rightarrow M=2\)

12 tháng 12 2018

Ta có :

\(xy+yz+xz=0\\ \Rightarrow\left[{}\begin{matrix}xy=-xz-yz=-z\left(x+y\right)\\yz=-xy-xz=-x\left(y+z\right)\\xz=-xy-yz=-y\left(x+z\right)\end{matrix}\right.\)

\(M=\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}=\dfrac{-z\left(x+y\right)}{z}+\dfrac{-y\left(x+z\right)}{y}+\dfrac{-x\left(y+z\right)}{x}\\ =-\left(x+y\right)-\left(x+z\right)-\left(y+z\right)=-x-y-x-z-y-z\\ =-2\left(x+y+z\right)=\left(-2\right)\cdot\left(-1\right)=2\)

\(\Rightarrow M=2\)