Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a . ( x - 1/2 ) - 2 x = 1
=> x - 1/2 = 1 hoặc 2x =0
=> x = 3/2 hoặc x = 0
b .( x -1/3 ) + ( 2y -1 ) = 0
=> x - 1/3 = 0 hoặc 2y - 1 = 0
=> x = 1/3 hoặc 2y = 1
=> x = 1/3 hoặc y = 1/2
c. ( x - 1,5 ) + ( y - 2,5 ) + ( x + y + z ) nhỏ hơn hoặc bằng 0
=> x - 1,5 = 0 hoặc y - 2,5 = 0 hoặc x + y + z = 0
=> x= 1,5 hoặc y= 2,5 hoặc x + y +z = 0
=> x = 1,5 hoặc y = 2,5 hoặc 1,5 + 2,5 + z = 0
=> x = 1,5 hoặc y = 2,5 hoặc z = 4 , - 4
a) \(\left|7x+3\right|=66\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}7x+3=66\\7x+3=-66\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}7x=63\\7x=-69\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=9\left(N\right)\\x=-\frac{69}{7}\left(L\right)\end{cases}}\)
Vậy...
b) \(\left|5x-2\right|\le0\)
mà \(\left|5x-2\right|\ge0\)
\(\Rightarrow\)\(\left|5x-2\right|=0\)
\(\Leftrightarrow\)\(5x-2=0\)
\(\Leftrightarrow\)\(x=\frac{2}{5}\) (loại)
Vậy...
Bạn nói qua thôi vì dài
A, bạn lập bẳng ra x,y thuộc ước của -21
B,Bạn cũng lập bảng thuộc ước của -35.Lưu Ý:(2x-1) là số lẻ còn (2x+10) lẻ nốt
c,Phân tích khi mở ngoặc chuyển vế sao cho ra kết quả
D, hai trường hợp xảy ra.TH1:Vế trái bằng 0:TH2:Vế phải bằng 0
1a) (2x - 6)(x + 2) = 0
=> \(\orbr{\begin{cases}2x-6=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=6\\x=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b) (x2 + 7)(x2 - 25) = 0
=> \(\orbr{\begin{cases}x^2+7=0\\x^2-25=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=-7\\x^2=25\end{cases}}\)
=> x ko có giá trị vì x2 \(\ge\)0 mà x2= -7
hoặc x = \(\pm\)5
a: =>|x-1/2|=2x+1
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(2x+1\right)^2-\left(x-\dfrac{1}{2}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(2x+1-x+\dfrac{1}{2}\right)\left(2x+1+x-\dfrac{1}{2}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(x+\dfrac{3}{2}\right)\left(3x-\dfrac{1}{2}\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{6}\)
b: =>\(\left\{{}\begin{matrix}x-1.3=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1.3\\y=\dfrac{1}{2}\end{matrix}\right.\)