Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + y2 - 2x + 4y + 5 = 0
\(\Leftrightarrow\)( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0
\(\Leftrightarrow\)( x - 1 )2 + ( y + 2 )2 = 0
\(\Rightarrow\)x - 1 = 0 và y + 2 = 0
\(\Rightarrow\)x = 1 và y = - 2
Vậy : x = 1 và y = - 2
b) 4x2 + 9y2 - 4x - 6y + 2 = 0
\(\Leftrightarrow\)[ ( 2x )2 - 4x + 1 ] + [ ( 3y )2 - 6y + 1 ] = 0
\(\Leftrightarrow\)( 2x - 1 )2 + ( 3y - 1 )2 = 0
\(\Rightarrow\)2x - 1 = 0 và 3y - 1 = 0
\(\Rightarrow\)x = 1 / 2 và y = 1 / 3
Vậy : x = 1 / 2 và y = 1 / 3
a) \(x^2+y^2-2x+4y+5=0\)
\(x^2+y^2-2x+4y+1+4=0\)
\(\left(x^2-2x+1\right)\left(y^2+4y+4\right)=0\)
\(\left(x-1\right)^2\left(y+2\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)
b) \(4x^2+9y^2-4x-6y+2=0\)
\(\left(4x^2-4x+1\right)\left(9y^2-6y+1\right)=0\)
\(\left(2x-1\right)^2\left(3y-1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\3y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{3}\end{cases}}}\)
C =- (4x2+4x+1) - (9y2 -6y +1) +3 = - (2x+1)2 - ( 3y -1)2 + 3 </ 3
C max = 3 khi x =-1/2 và y =1/3
D - dể suy nghĩ đã nhé
\(4x^2-4x+9y^2-6y+16z^2-8z+3=0\)
\(\left(4x^2-4x+1\right)+\left(9y^2-6y+1\right)+\left(16z^2-8y+1\right)=0\)
\(\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2=0\)
\(=>\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y-1\right)^2=0\\\left(4z-1\right)^2=0\end{cases}=>\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}=>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\z=\frac{1}{4}\end{cases}}}}\)
Vậy...
Bài 1:tìm x ,biết:
a) (2x - 1)(3x + 2) - 6x(x + 1) = 0
\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)
\(\Leftrightarrow-5x=2\)
\(\Leftrightarrow x=\frac{-2}{5}\)
b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)
\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)
\(\Leftrightarrow-10x=-4\)
\(\Leftrightarrow x=\frac{2}{5}\)
c) \(4x^2-1=2\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)
\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)
b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)
\(=1.\left(2x-1\right)\)
c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)
\(=\left(x-4-2y\right)\left(x-4+2y\right)\)
d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)
\(=\left(3x-2-y\right)\left(3x-2+y\right)\)
e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)
\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)
\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)
a/ \(A=x^2+y^2-2x+6y+12\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2\ge0\)
\(\Leftrightarrow A\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Vậy....
b/ \(B=-4x^2-9y^2-4x+6y+3\)
\(=-\left(4x^2+4x+1\right)-\left(9y^2+6y+1\right)+1\)
\(=-\left(2x+1\right)^2-\left(3y+1\right)^2+1\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(2x+1\right)^2\ge0\\\left(3y+1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\left(2x+1\right)^2\le0\\-\left(3y+1\right)^2\le0\end{matrix}\right.\)
\(\Leftrightarrow-\left(2x+1\right)^2-\left(3y+1\right)^2\le0\)
\(\Leftrightarrow B\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=-\frac{1}{3}\end{matrix}\right.\)
c) \(x^2+x-ax-a\)
\(=x\left(x+1\right)-a\left(x+1\right)\)
\(=\left(x+1\right)\left(x-a\right)\)
d) \(2xy-ax+x^2-2ay\)
\(=2y\left(x-a\right)+x\left(x-a\right)\)
\(=\left(x-a\right)\left(2y+x\right)\)
e) \(x^2y+xy^2-x-y\)
\(=xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(xy-1\right)\)
f) \(25-10x-4y^2+x^2\)
\(=\left(x^2-10x+25\right)-\left(2y\right)^2\)
\(=\left(x-5\right)^2-\left(2y\right)^2\)
\(=\left(x-5-2y\right)\left(x-5+2y\right)\)
g) \(x^3-6xy+9y^2-36\)
h) \(4x^2-9y^2+4x-6y\)
\(=\left(2x\right)^2-\left(3y\right)^2+2\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y+2\right)\)
k) \(-x^2+5x+2xy-5y-y^2\)
\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)
\(=-\left(x-y\right)^2+5\left(x-y\right)\)
\(=\left(x-y\right)\left(-x+y+5\right)\)
i) \(4x^2-25y^2-6x+15y\)
\(=\left(2x\right)^2-\left(5y\right)^2-3\left(2x-5y\right)\)
\(=\left(2x-5y\right)\left(2x+5y\right)-3\left(2x-5y\right)\)
\(=\left(2x-5y\right)\left(2x+5y-3\right)\)
a, \(x\left(y+z\right)^2+y\left(x+z\right)^2+z\left(x+y\right)^2+4xyz\)
\(=x\left(y+z\right)^2+x^2\left(y+z\right)+yz\left(y+z\right)\)
\(=\left(y+z\right)\left(xy+xz+z^2+yz\right)\)
\(=\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)
\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)
b, \(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+xz^2-x^2z-x^2y-xy^2\)
\(=yz\left(y+z\right)-x\left(y+z\right)\left(y-z\right)-x^2\left(y+z\right)\)
\(=\left(y+z\right)\left(yz-xy+xz-x^2\right)\)
\(=\left(y+z\right)\left[y\left(z-x\right)+x\left(z-x\right)\right]\)
\(=\left(y+z\right)\left(y+x\right)\left(z-x\right)\)
\(4x^2-4x+1+9y^2-6y+1+16z^2-8z+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\x=\frac{1}{4}\end{cases}}\)
vay ................................................
Ta có :
4x2 + 9y2 + 16z2 - 4x - 6y - 8z + 3 = 0
( 2x ) 2 + ( 3y)2 + ( 4z)2 - 4x - 6y - 8z + 3 = 0
\([\left(2x\right)^2-2.2x+1]+[\left(3y\right)^2-2.3y+1]+[\left(4z\right)^2-2.4z+1]=0\)=0
( 2x-1)2 + ( 3y -1 )2 + ( 4z - 1) 2 = 0
Mà ( 2x-1)2 \(\ge\)0 với mọi x
( 3y-1 )2 \(\ge0\)với mọi y
( 4z - 1) 2 \(\ge0\)với mọi z
nên \(\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\z=\frac{1}{4}\end{cases}}}\)
Vậy x = 1/2 ; y = 1/3 ; z = 1/4