K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

Vì \(\hept{\begin{cases}\left(2x-1\right)^{2010}\ge0\\\left(y-\frac{2}{5}\right)^{2010}\ge0\\\left|x+y-z\right|\ge0\end{cases}\forall x,y,z}\)

\(\Rightarrow\left(2x-1\right)^{2010}+\left(y-\frac{2}{5}\right)^{2010}+\left|x+y-z\right|\ge0\)

Mà \(\left(2x-1\right)^{2010}+\left(y-\frac{2}{5}\right)^{2010}+\left|x+y-z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^{2010}=0\\\left(y-\frac{2}{5}\right)^{2010}=0\\\left|x+y-z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)

Vậy...

21 tháng 3 2017

a.2010-|x-2010|=x

=>| x-2010|=2010-x

Ta có: | x- 2010 |= x-2010 hoặc |x-2010|= -(x-2010)

TH1: | x-2010|= x-2010

=>x-2010= 2010 - x

=> x+x= 2010+2010

=> 2x = 4020

=> x = 2010.

TH2: | x-2010|=-( x- 2010)

=> -x+2010= 2010-x

=>-x+x=2010-2010

=> 0=0(luôn đúng).

=>x=0

Vậy x= 2010 hoặc x=0

b. Ta có: \(\left(2x-1\right)^{2010}\) \(\ge0\)

\(\left(y-\dfrac{2}{5}\right)^{2010}\ge0\)

\(\left|x+y-z\right|\ge0\)

=> Để biểu thức trên xảy ra =>\(\left(2x-1\right)^{2010}=0\)

\(\left(y-\dfrac{2}{5}\right)^{2010}=0\)

\(\left|x+y-z\right|=0\)

* Với \(\left(2x-1\right)^{2010}=0\)

=> 2x -1 =0

=> 2x = 1

=> x= \(\dfrac{1}{2}\)

*Với \(\left(y-\dfrac{2}{5}\right)^{2010}=0\)

=> \(y-\dfrac{2}{5}=0\)

=> y= \(\dfrac{2}{5}\)

* Với \(\left|x+y-z\right|=0\)

=> x+y-z=0

=> \(\dfrac{1}{2}+\dfrac{2}{5}-z=0\)

=> \(\dfrac{9}{10}-z=0\)

=> \(z=\dfrac{9}{10}\)

Vậy \(x=\dfrac{1}{2}\); \(y=\dfrac{2}{5}\); \(z=\dfrac{9}{10}\)

21 tháng 3 2017

nè,câu a mình làm có đúng k các bạn?lolang

10 tháng 1 2017

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)

*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)

\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)

*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)

10 tháng 1 2017

a)

Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)

Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thế (1) vào biểu thức B

\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)

\(\Rightarrow B=2.2.2=8\)

Vậy biểu thức \(B=8\)

5 tháng 1 2015

Bạn viết sai đề rồi bạn, bài như thế này thì ko làm được

25 tháng 2 2019

phải là (x-z)\(^{2100}\)mới đúng. Bạn ghi sai rồi

31 tháng 7 2016

b) \(2x=3y=6z\) và \(x+y+z=1830\)

Ta có: \(2x=3y=6z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}\) và \(x+y+z=1830\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{6}}=\frac{1830}{1}=1830\) 

\(\Rightarrow x=1830.\frac{1}{2}=915\)

\(y=1830.\frac{1}{3}=610\)

\(z=1830.\frac{1}{6}=305\)

31 tháng 7 2016

a)  \(\left(a-2009\right)^2+\left(b+2010\right)^2=0\)

Ta có: \(\left(a-2009\right)^2\ge0\)

\(\left(b+2010\right)^2\ge0\)

Để \(\left(a-2009\right)^2+\left(b+2010\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a-2009=0\Rightarrow a=2009\\b+2010=0\Rightarrow b=-2010\end{cases}}\)

Vậy \(a=2009\)

\(b=-2010\)