\(\dfrac{2x-3y}{2}=\dfrac{4z-2z}{3}=\dfrac{3z-4x}{4}\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

g,

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)\(\Rightarrow3x-2y=2z-5x=5y-3z=0\)

* 3x - 2y = 0 \(\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)

* 2z - 5x = 0 \(\Rightarrow2z=5x\Rightarrow\dfrac{x}{2}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{50}{10}=5\)

\(\cdot\dfrac{x}{2}=5\Rightarrow x=10\)

\(\cdot\dfrac{y}{3}=5\Rightarrow y=15\)

\(\cdot\dfrac{z}{5}=5\Rightarrow z=25\)

28 tháng 11 2017

câu h thiếu điều kiện rồi bạn ơi

11 tháng 7 2017

a)Xét \(x=\dfrac{y}{2}=\dfrac{z}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=k\\y=2k\\z=3k\end{matrix}\right.\) (1)

Thay (1) vào 4x - 3y + 2z = 36

\(\Rightarrow4.k-3.2k+2.3k=36\)

\(\Rightarrow4k-6k+6k=36\Rightarrow4k=36\)

\(\Rightarrow k=\dfrac{36}{4}=9\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=2.4=8\\z=3.4=12\end{matrix}\right.\)

Vậy...............................................................

b) Xét \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\\z=7k\end{matrix}\right.\) (2)

Thay (2) vào 2x - 3z = 44

\(\Rightarrow2.5k-3.7k=44\)

\(\Rightarrow-11k=44\Rightarrow k=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.\left(-4\right)=-20\\y=4.\left(-4\right)=-16\\z=7.\left(-4\right)=-28\end{matrix}\right.\)

Vậy,................................................

c) Xét \(\dfrac{-x}{7}=\dfrac{y}{11}=\dfrac{-z}{5}=\dfrac{x}{-7}=\dfrac{z}{-5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-7k\\y=11k\\z=-5k\end{matrix}\right.\) (3)

Thay (3) vào -3z - 2y - x = -88

\(\Rightarrow-3.\left(-5k\right)-2.11k-\left(-7k\right)=-88\)

\(\Rightarrow15k-22k+7k=-88\Rightarrow0k=88\)

\(\Rightarrow k\in\varnothing\)

Suy ra: Không có cặp ( x; y; z) thỏa mãn

Vậy.................................................................

d) Xét \(\dfrac{y}{12}=\dfrac{x}{-5}=\dfrac{z}{11}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-5k\\y=12k\\z=11k\end{matrix}\right.\) (4)

Thay (4) vào 5y - 2z = 114

\(\Rightarrow6.12k-2.11k=114\)

\(\Rightarrow50k=114\Rightarrow k=2,28\)

\(\Rightarrow\left\{{}\begin{matrix}x=-5.2,28=-11,4\\y=12.2,28=27,36\\z=25,08\end{matrix}\right.\)

Vậy..............................................

e) Xét \(\dfrac{x}{25}=\dfrac{y}{17}=\dfrac{z}{32}=k\)

\(\left\{{}\begin{matrix}x=25k\\y=17k\\z=32k\end{matrix}\right.\) (5)

Thay (5) vào -2z + 3y - 4x = -452

\(\Rightarrow\left(-2\right).32k+3.17k-4.25k=-452\)

\(\Rightarrow-113k=-452\Rightarrow k=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=25.5=100\\y=17.4=68\\z=32.4=128\end{matrix}\right.\)

Vậy.......................................................

11 tháng 7 2017

a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(x=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\\ \Rightarrow\dfrac{4x}{4}-\dfrac{3y}{6}+\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{36}{4}=9\)

+) \(\dfrac{x}{1}=9\Rightarrow x=9\)

+) \(\dfrac{y}{2}=9\Rightarrow y=18\)

+) \(\dfrac{z}{3}=9\Rightarrow z=27\)

Vậy x = 9; y = 18; z = 27.

tương tự

30 tháng 10 2018

a) Ta có: 3x = 2y; 4x = 2z

\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{2}=\dfrac{z}{4}\)

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và x + y + z = 27

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)

\(\dfrac{x}{2}=3\) ⇒ x = 6

\(\dfrac{y}{3}=3\) ⇒ y = 9

\(\dfrac{z}{4}=3\) ⇒ z = 12

Vậy x = 6 ; y = 9 ; z = 12

b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)

\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)

và 2x2 + 3y2 - 5z2 = -405

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)=\(\dfrac{2x^2+3y^2-5z^2}{8+27-80}=\dfrac{-405}{-45}=9\)

+) \(\dfrac{2x^2}{8}=9\) ⇒ 2x2 = 72 ⇒ x2 = 72 : 2

⇒ x2 = 36 ⇒ x = 6 hoặc x = -6

+) \(\dfrac{3y^2}{27}=9\) ⇒ 3y2 = 243 ⇒ y2 = 243 : 3

⇒ y2 = 81 ⇒ y = 9 hoặc y = -9

+) \(\dfrac{5z^2}{80}=9\) ⇒ 5z2 = 720 ⇒ z2 = 720 : 5

⇒ z2 = 144 ⇒ z = 12 hoặc z = -12

Vậy...................................( bạn tự vậy nhé )

c) Giống câu a ( bạn tự chép lại )

d) Mik ko bt lm

30 tháng 10 2018

CÂU TRẢ LỜI RẤT HAY BẠN NÀO ĐANG CẦN THÌ THAM KHẢO NHÉ!!!!!!!!

NV
10 tháng 11 2018

Bạn viết nhầm đề à? Phải là 3x+2y+z=17 mới hợp lý chứ 3x+2x+z=17 vô lý, ai cho đề kiểu vầy

Nhân tử và mẫu của phân thức đầu tiên với 2 và áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{4x-6y}{4}=\dfrac{4y-2z}{3}=\dfrac{3z-4x}{4}=\dfrac{4x-6y+4y-2z+3z-4x}{4+3+4}=\dfrac{-2y+z}{11}=\dfrac{-4y+2z}{22}\)

\(\Rightarrow\dfrac{2x-3y}{2}=\dfrac{4y-2z}{3}=\dfrac{3z-4x}{4}=\dfrac{-4y+2z}{22}=\dfrac{4y-2z+-4y+2z}{3+22}=\dfrac{0}{25}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x-3y}{2}=0\\\dfrac{4y-2z}{3}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-3y=0\\4y-2z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}y\\z=2y\end{matrix}\right.\)

Thay vào 3x+2y+z=17 ta được:

\(3.\dfrac{3}{2}y+2y+2y=17\Rightarrow\dfrac{17}{2}y=17\Rightarrow y=2\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}y=3\\y=2\\z=2y=4\end{matrix}\right.\)

17 tháng 7 2017

a,

\(\dfrac{2x}{3y}=\dfrac{-1}{3}\\ \Rightarrow\dfrac{2x}{-1}=\dfrac{3y}{3}\\ \Leftrightarrow\dfrac{-2x}{1}=\dfrac{3y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{-2x}{1}=\dfrac{3y}{3}=\dfrac{-2x+3y}{1+3}=\dfrac{7}{4}\)

\(\dfrac{-2x}{1}=\dfrac{7}{4}\Rightarrow-2x=\dfrac{7}{4}\Rightarrow x=\dfrac{7}{4}:\left(-2\right)=\dfrac{-7}{8}\\ \dfrac{3y}{3}=\dfrac{7}{4}\Rightarrow y=\dfrac{7}{4}\)

Vậy \(x=\dfrac{-7}{8};y=\dfrac{7}{4}\)

b,

\(\dfrac{x}{3}=\dfrac{y}{4}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{5y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{6}=\dfrac{5y}{20}=\dfrac{2x+5y}{6+20}=\dfrac{10}{26}=\dfrac{5}{13}\\ \dfrac{x}{3}=\dfrac{2x}{6}=\dfrac{5}{13}\Rightarrow x=\dfrac{5}{13}\cdot3=\dfrac{15}{13}\\ \dfrac{y}{4}=\dfrac{5y}{20}=\dfrac{5}{13}\Rightarrow y=\dfrac{5}{13}\cdot4=\dfrac{20}{13}\)

Vậy \(x=\dfrac{15}{13};y=\dfrac{20}{13}\)

c,

\(7x=3y\\ \Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\\ \dfrac{x}{3}=-4\Rightarrow x=\left(-4\right)\cdot3=-12\\ \dfrac{y}{7}=-4\Rightarrow y=\left(-4\right)\cdot7=-28\)

Vậy \(x=-12;y=-28\)

d,

\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{z}{-2}\\ \Leftrightarrow\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}=\dfrac{x+y+\left(-2z\right)}{5+1+4}=\dfrac{x+y-2z}{10}=\dfrac{160}{10}=16\\ \dfrac{x}{5}=16\Rightarrow x=16\cdot5=80\\ \dfrac{y}{1}=16\Rightarrow y=16\\ \dfrac{z}{-2}=\dfrac{-2z}{4}=16\Rightarrow z=16\cdot\left(-2\right)=-32\)

Vậy \(x=80;y=16;z=-32\)

e,

\(\dfrac{x}{10}=\dfrac{y}{5}\Rightarrow\dfrac{x}{20}=\dfrac{y}{10};\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{y}{10}=\dfrac{z}{15}\\ \Rightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\\ \Leftrightarrow\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}=\dfrac{2x-3y+4z}{40-30+60}=\dfrac{330}{70}=\dfrac{33}{7}\)

\(\dfrac{x}{20}=\dfrac{2x}{40}=\dfrac{33}{7}\Rightarrow x=\dfrac{33}{7}\cdot20=\dfrac{660}{7}\\ \dfrac{y}{10}=\dfrac{3y}{30}=\dfrac{33}{7}\Rightarrow y=\dfrac{33}{7}\cdot10=\dfrac{330}{7}\\ \dfrac{z}{15}=\dfrac{4z}{60}=\dfrac{33}{7}\Rightarrow z=\dfrac{33}{7}\cdot15=\dfrac{495}{7}\)

Vậy \(x=\dfrac{660}{7};y=\dfrac{330}{7};z=\dfrac{495}{7}\)

f,

\(\dfrac{x}{-2}=\dfrac{-y}{4}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}=\dfrac{x+\left(-2y\right)+3z}{\left(-2\right)+8+15}=\dfrac{x-2y+3z}{21}=\dfrac{1200}{21}=\dfrac{400}{7}\)

\(\dfrac{x}{-2}=\dfrac{400}{7}\Rightarrow x=\dfrac{400}{7}\cdot\left(-2\right)=\dfrac{-800}{7}\\ \dfrac{-y}{4}=\dfrac{-2y}{8}=\dfrac{400}{7}\Rightarrow-y=\dfrac{400}{7}\cdot4=\dfrac{1600}{7}\Rightarrow y=\dfrac{-1600}{7}\\ \dfrac{z}{5}=\dfrac{3z}{15}=\dfrac{400}{7}\Rightarrow z=\dfrac{400}{7}\cdot5=\dfrac{2000}{7}\)

Vậy \(x=\dfrac{-800}{7};y=\dfrac{-1600}{7};z=\dfrac{2000}{7}\)

g,

\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}=\dfrac{2x+3y-z}{6+24-5}=\dfrac{50}{25}=2\)

\(\dfrac{x}{3}=\dfrac{2x}{6}=2\Rightarrow x=2\cdot3=6\\ \dfrac{y}{8}=\dfrac{3y}{24}=2\Rightarrow y=2\cdot8=16\\ \dfrac{z}{5}=2\Rightarrow z=2\cdot5=10\)

Vậy \(x=6;y=16;z=10\)

Làm gấp nên k có kiểm tra, bn bấm máy tính dò lại nhé

26 tháng 10 2018

Xét \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\) (1)

Thay (1) vào P

=> P = \(\dfrac{3k+2.4k+3.5k}{2.5k+3.4k+4.5k}+\dfrac{2.5k+3.4k+4.5k}{3.3k+4.4k+5.5k}\) + \(\dfrac{3.3k+4.4k+5.5k}{4.3k+5.4k+6.5k}\)

=> P = \(\dfrac{26k}{42k}+\dfrac{42k}{50k}\) + \(\dfrac{50k}{62k}\)

=> P = \(\dfrac{13}{21}+\dfrac{21}{25}+\dfrac{25}{31}\approx2,265499232\)

26 tháng 10 2018

lộn đề .

Thay 2z + 3y + 4z = 2x+ 3y + 4z nha

14 tháng 12 2017

ko ai trả lời hẳn một đống cho cậu đâu chi

15 tháng 12 2017

k cần trả lời hết cũng đc

nhưng có trả lời là đc rùi

27 tháng 12 2017

Giải:

Ta có:

\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}.\)

\(\Rightarrow\dfrac{3\left(2x-4y\right)}{3^2}=\dfrac{2\left(4z-3x\right)}{2^2}=\dfrac{4\left(3y-2z\right)}{4^2}.\)

\(\Rightarrow\dfrac{6x-12y}{9}=\dfrac{8z-6x}{4}=\dfrac{12y-8z}{16}.\)

\(=\dfrac{6x-12y+8z-6x+12y-8z}{9+4+16}.\)

\(=\dfrac{\left(6x-6x\right)+\left(8z-8z\right)+\left(12y-12y\right)}{19}=0.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}.\\4z=3x\Rightarrow\dfrac{z}{3}=\dfrac{x}{4}.\\3y=2z\Rightarrow\dfrac{y}{2}=\dfrac{z}{3}.\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{2x}{8}=\dfrac{y}{2}=\dfrac{z}{3}_{\left(1\right)}\)\(2x-y+z=27_{\left(2\right)}.\)

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\), kết hợp tính chất dãy tỉ số bằng nhau có:

\(\dfrac{2x}{8}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-y+z}{8-2+3}=\dfrac{27}{9}=3.\)

Từ đó: \(\left\{{}\begin{matrix}2x=3.8=24\Rightarrow x=12.\\y=3.2=6.\\z=3.3=9.\end{matrix}\right.\)

Vậy.....

27 tháng 12 2017

\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}\\ \Rightarrow\dfrac{6x-12y}{9}=\dfrac{8z-6x}{4}=\dfrac{12y-8z}{16}\\ =\dfrac{6x-12y+8z-6x+12y-8z}{9+4+16}=\dfrac{0}{29}=0\\ \Rightarrow2x=4y;4z=3x;3y=2z\\ \Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\\ \Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-y+z}{8-2+3}=\dfrac{27}{9}=3\\ \Rightarrow x=12;y=6;z=9\)

3 tháng 12 2017

Ta có

\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}\)

\(\Rightarrow\dfrac{3\left(2x-4y\right)}{3.3}=\dfrac{2\left(4z-3x\right)}{2.2}=\dfrac{4\left(3y-2z\right)}{4.4}\)

\(\Rightarrow\dfrac{6x-12y}{3^2}=\dfrac{8z-6x}{2^2}=\dfrac{12y-8z}{4^2}\)

\(=\dfrac{6x-12y+8z-6x+12y-8z}{3^2+2^2+4^2}=0\)

Nên \(\dfrac{2x-4y}{3}=0\Rightarrow2x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}\left(1\right)\)

\(\dfrac{4z-3x}{2}=0\Rightarrow4z=3x\Rightarrow\dfrac{x}{4}=\dfrac{z}{3}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{2x}{8}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x+z-y}{8+3-2}=\dfrac{36}{9}=4\)

*\(\dfrac{x}{4}=4\Rightarrow x=4.4=16\)

*\(\dfrac{y}{2}=4\Rightarrow y=2.4=8\)

*\(\dfrac{z}{3}=4\Rightarrow z=3.4=12\)

Vậy x = 16 và y = 8 và z = 12