K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

Trong mấy cái số viết liền ở câu a bạn thêm phân số nha, mình làm nhanh nên quên ghi.

12 tháng 10 2017

a) \(\frac{x}{2}=\frac{y}{3};\frac{y}{3}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{9}=\frac{x-2y+3z}{2-6+9}=\frac{19}{5}\)

\(\frac{x}{2}=\frac{19}{5}\Rightarrow x=\frac{38}{5}\)

\(\frac{y}{3}=\frac{19}{5}\Rightarrow y=\frac{57}{5}\)

\(\frac{z}{3}=\frac{19}{5}\Rightarrow z=\frac{57}{5}\)

6 tháng 8 2017

Ta có:

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và \(x^2-y^2=-16\)

Áp dụng tinh chất của dãy tỉ số bằng nhau:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x^2-y^2}{8^2-12^2}=\frac{-16}{-80}=\frac{1}{5}\)

\(\hept{\begin{cases}\frac{x^2}{8^2}=\frac{1}{5}\Rightarrow x=\sqrt{\frac{1}{5}.8^2}=\frac{8\sqrt{5}}{5};x=-\frac{8\sqrt{5}}{5}\\\frac{y^2}{12^2}=\frac{1}{5}\Rightarrow y=\sqrt{\frac{1}{5}.12^2}=\frac{12\sqrt{5}}{5};y=-\frac{12\sqrt{5}}{5}\\\frac{z}{15}=\sqrt{\frac{1}{5}}\Rightarrow z=\sqrt{\frac{1}{5}}.15=3\sqrt{5}\end{cases}}\)

Vậy .......

15 tháng 1 2018

Mong bạn thông cảm cho . Dấu " / " là phân số nhé !

x/2 = y/3 ; y/4 = z/5 và x2 - y2 = -16

=> x/2 = y/3 <=> x/8 = y/12     (1)

     y/4 = z/5 <=> y/12 = z/15    (2)

Từ (1) và (2) suy ra : x /8 = y/12 = z/15 và x2 - y2 = -16

=> x2/16 = y2/24 = z/15 <=> x2/16 = y2/24

Áp dụng t/c dãy tỉ số bằng nhau , ta có :

  x2/16 = y2/24 = x2 - y2 / 16 - 24 = -16/-8 = 2

=> x/8 = 2 => x = 16

     y/12 = 2 => y = 24

     z/15 = 2 => z = 30

Vậy x = 16

       y = 24

       z = 30

Chúc bạn học tốt !

4 tháng 12 2016

Giải:

a) Đặt \(\frac{x}{10}=\frac{y}{6}=k\)

\(\Rightarrow x=10k,y=6k\)

\(xy=60\)

\(\Rightarrow10k6k=60\)

\(\Rightarrow60k^2=60\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=\pm1\)

+) \(k=1\Rightarrow x=10;y=6\)

+) \(k=-1\Rightarrow x=-10;y=-6\)

Vậy cặp số \(\left(x;y\right)\)\(\left(10;6\right);\left(-10;-6\right)\)

b) Hình như đề sai !!!

c) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

+) \(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)

+) \(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)

( x, y cùng dấu )

Vậy cặp số ( x; y ) là ( 6; 8 ) ; ( -6; -8 )
 

4 tháng 12 2016

b) x-1/2=y-2/3=z-3/4 vã-2y+3z=16

29 tháng 7 2015

b) 4x = 7y và \(x^2+y^2=260\)

Ta có: \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)

Đặt \(\frac{x}{7}=\frac{y}{4}=k\Rightarrow x=7k;\)\(y=4k\)

\(x^2+y^2=49k^2+16k^2=65k^2=260\)

\(\Rightarrow k^2=4\Rightarrow k=+-2\)

Với k = 2 thì: \(\frac{x}{7}=2\Rightarrow x=7.2=14\)

                      \(\frac{y}{4}=2\Rightarrow y=4.2=8\)

Với k = (-2) thì: \(\frac{x}{7}=-2\Rightarrow x=7.\left(-2\right)=-14\)

                          \(\frac{y}{4}=-2\Rightarrow x=4.\left(-2\right)=-8\)

Kết luận : \(x=+-14\)

                 \(y=+-8\)                          

29 tháng 7 2015

câu 1:Theo đề ta có: \(\frac{x}{2}=\frac{y}{4}\) và x2.y2=  64

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

  \(\frac{x}{2}=\frac{y}{4}\)<=> \(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{x^2}{4}=\frac{y^2}{16}\)

Đặt   \(\frac{x^2}{4}=\frac{y^2}{16}=k\)

=> x2 =4k

    y2= 16k

thay vào : x2.y2=  64

Ta có:   4k.16k= 64

           64.k2    = 64

  =>        k     =  -1 ; 1

  =>      x2=    4.k =>   x2= -4; 4=>   x=  2;-2

     tương tự tìm y

19 tháng 10 2018

a)\(x.x=\frac{y}{-3}.\frac{y}{-3}=\frac{z}{4}.\frac{z}{4}=\frac{x^2+y^2-z^2}{1+9-16}=\frac{6}{-6}=-1\)

không tồn tại vì x.x>=0

b)\(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{6}\)

\(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{z}{8}=\frac{y}{6}\)

Suy ra \(\frac{x}{15}=\frac{y}{6}=\frac{z}{8}=\frac{x-y+z}{15-6+8}=\frac{10}{17}\)

\(x=15.\frac{10}{17}=\frac{150}{17}\)

\(y=6.\frac{10}{17}=\frac{60}{17}\)

c) \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{14}{2}=7\)

x=7.5=35; y=3.7=21

d) \(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{2x+y}{4+5}=\frac{18}{9}=2\)

x=2.2=4;  y=2.5=10

25 tháng 7 2017

a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)

     \(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)

THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)

\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)

Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)

             \(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)

KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)

25 tháng 7 2017

b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)  

                \(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)

Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :

\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)

\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)

\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)

Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)

     \(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)

18 tháng 7 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2+z^2=585\)

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\) va \(x^2+y^2+z^2=585\)

Áp dụng tính chất day ti số bằng nhau ta có :

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{25+49+9}=\frac{585}{83}=7,048192771\)

xin mời quý khách xem lại đề nhé để sai rồj đó

18 tháng 7 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{25+49+9}=\frac{585}{83}=\)số xấu