K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

  Ta có x2=y3\(\Rightarrow\) x/3=y/2;y5=z6\(\Rightarrow\) y/6=z/5                                                                                                          x/3=y/2\(\Rightarrow\) 1/3.x/3=1/3.y/2\(\Rightarrow\) x/9=y/6 (1) và y/6=z/5 (2). Từ (1) và (2)\(\Rightarrow\)x/9=y/6=z/5                                         \(\Rightarrow\) x^2/81=y^2/36=z^2/25=(x^2+y^2-z^2)/(81+36-25)=92/92=1                                                                      \(\Rightarrow\) x=9 hoặc -9                                                                                                                                            y=6 hoặc -6 và z=5 hoặc -5

23 tháng 7 2016

a) \(\frac{x}{2}=\frac{y}{3}\)và \(\frac{y}{5}=\frac{z}{7}\)và \(x+y+z=92\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số = nhau

ta có 

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

Suy ra \(\frac{x}{10}=2\Rightarrow x=2.10=20\)

\(\frac{y}{15}=2\Rightarrow y=2.15=30\)

\(\frac{z}{21}=2\Rightarrow z=2.21=42\)

Vậy \(x=20;y=30;z=42\)

15 tháng 11 2018

\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Leftrightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x}{2.9}=\frac{3y}{3.12}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\frac{x}{9}=3\Rightarrow x=3.9=27\)

\(\frac{y}{12}=3\Rightarrow y=3.12=36\)

\(\frac{z}{20}=3\Rightarrow z=3.20=60\)

Vậy x=27;y=36;z=60

16 tháng 11 2018

chính xác

19 tháng 8 2018

Theo đề bài ta có :

Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Do đó ta có Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Vậy x =16 ; y = 24 ; z =30

AH
Akai Haruma
Giáo viên
30 tháng 6 2023

Lời giải:
Ta thấy:

$(-x^2y^3)^2\geq 0$ với mọi $x,y$

$(2y^2z^4=2(yz^2)^2\geq 0$ với mọi $y,z$

$\Rightarrow (2y^2z^4)^3\geq 0$ với mọi $y,z$
Do đó để tổng $(-x^2y^3)^2+(2y^2z^4)^3=0$ thì:

$-x^2y^3=2y^2z^4=0$

Hay $(x,y,z)=(x,0,z)$ với $x,z$ bất kỳ hoặc $(x,y,z)=(0,y,0)$ với $y$ là số bất kỳ.

18 tháng 12 2019

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Đáp án A

28 tháng 5 2018