Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x và y tỉ lệ nghịch với 3 và 2 nên 3x=2y
=>x/2=y/3
=>x/10=y/15
y và z tỉ lệ nghịch với 4 và 5 nên 4y=5z
=>y/5=z/4
hay y/15=z/12
=>x/10=y/15=z/12
Đặt x/10=y/15=z/12=k
=>x=10k; y=15k; z=12k
\(3x^2-y^2+z^2=1971\)
\(\Leftrightarrow300k^2-225k^2+144k^2=1971\)
\(\Leftrightarrow k^2=9\)
Trường hợp 1: k=3
=>x=30; y=45; z=36
TRường hợp 2: k=-3
=>x=-30; y=-45; z=-36
\(x\)và \(y\)tỉ lệ thuận với \(2\)và \(5\)nên \(\frac{x}{2}=\frac{y}{5}\).
\(y\)và \(z\)tỉ lệ nghịch với \(3\)và \(4\)nên \(\frac{y}{4}=\frac{z}{3}\).
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{y}{4}=\frac{z}{3}\end{cases}}\Leftrightarrow\frac{x}{8}=\frac{y}{20}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{20}=\frac{z}{15}=\frac{x-y+z}{8-20+15}=\frac{36}{3}=12\)
\(\Leftrightarrow\hept{\begin{cases}x=12.8=96\\y=12.20=240\\z=12.15=180\end{cases}}\)
a, Ta có : 3x = 5y => \(\dfrac{x}{5}=\dfrac{y}{3}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\Rightarrow x=25;y=15\)
b, Ta có : \(6x=10y=15z\Rightarrow\dfrac{6x}{30}=\dfrac{10y}{30}=\dfrac{15z}{30}\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y+z}{5+3+2}=\dfrac{90}{10}=9\Rightarrow x=45;y=27;z=18\)
c, tương tự b
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{40}{8}=5\)
Do đó: x=15; y=25
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{15}}=\dfrac{x+y+z}{\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}}=\dfrac{90}{\dfrac{1}{3}}=270\)
Do đó: x=45; y=27; z=18
Theo đề, ta có: \(\left\{{}\begin{matrix}2x=3y\\4y=5z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{4}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=k\)
=>x=15k; y=10k; z=8k
Ta có: \(3x^2-y^2+z^2=1971\)
\(\Leftrightarrow675k^2-100k^2+64k^2=1971\)
\(\Leftrightarrow k^2=\dfrac{219}{71}\)
Trường hợp 1: \(k=\sqrt{\dfrac{219}{71}}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=15\sqrt{\dfrac{219}{71}}\\y=10\sqrt{\dfrac{219}{71}}\\z=8\sqrt{\dfrac{219}{71}}\end{matrix}\right.\)
Trường hợp 2: \(k=-\sqrt{\dfrac{219}{71}}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-15\sqrt{\dfrac{219}{71}}\\y=-10\sqrt{\dfrac{219}{71}}\\z=-8\sqrt{\dfrac{219}{71}}\end{matrix}\right.\)