Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a, Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\). Mà theo đề bài: 5x + y - 2z = 28
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{5x}{50}=\frac{x}{10}=2\Leftrightarrow x=20\\\frac{y}{6}=2\Leftrightarrow y=12\\\frac{2z}{42}=\frac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)(TMĐK)
Vậy: \(x=20;y=12;z=42\)
b, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) ; \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\). Mà theo đề bài: 2x+3y - z = 124
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{2x}{30}=\frac{x}{15}=2\Leftrightarrow x=30\\\frac{3y}{60}=\frac{y}{20}=2\Leftrightarrow y=40\\\frac{z}{28}=2\Leftrightarrow z=56\end{matrix}\right.\)(TMĐK)
Vây:\(x=30;y=40;z=56\)
c, Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}\). Mà x.y = 54
\(\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}=\frac{54}{3}=18\)
\(\Rightarrow\frac{x^2}{2}=18\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\}\)
Nếu \(x=6\Rightarrow\frac{6.y}{3}=18\Rightarrow6.y=54\Rightarrow y=9\)
Nếu \(x=-6\Rightarrow\frac{-6.y}{3}=18\Rightarrow-6.y=54\Rightarrow y=-9\)
Vậy: \(\left(x;y\right)\in\left\{\left(6;9\right),\left(-6;-9\right)\right\}\)
x/y=3/4=>x/3=y/4=>=>x/15=y/20
y/z=5/7=>y/5=z/7=>y/20=z/28
=>x/15=y/20=z/28=>2x/30=3y/60=z/28
áp dụng.. ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=\) 3
từ 2x/30=3=>2x=90=>x=45
3y/60=3=>3y=180=>y=60
z/28=3=>z=84
vậy..
tick nhé
Có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\frac{y}{z}=\frac{5}{7}\Rightarrow7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2)=>\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\) (Vì 2x+3y-z=186)
Vì \(\frac{2x}{30}=3\Rightarrow2x=90\Rightarrow x=45\)
Vì \(\frac{3y}{60}=3\Rightarrow3y=180\Rightarrow y=60\)
Vì \(\frac{z}{28}=3\Rightarrow z=84\)
Vậy \(x=45;y=60;z=84\)
*Bài làm:
a)*Ta có : \(\frac{x}{10}\) = \(\frac{y}{6}\) = \(\frac{z}{21}\)
\(\Rightarrow\) \(\frac{5x}{50}\) = \(\frac{y}{6}\) = \(\frac{2z}{42}\) . \(và5x+y-2z=28\)
\(\Rightarrow\) Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{5x}{50}\) = \(\frac{y}{6}\) = \(\frac{2z}{42}\) = \(\frac{5x+y-2z}{50+6-42}\) = \(\frac{28}{14}\) = \(2\)
\(\Rightarrow\left\{{}\begin{matrix}5x=2.50=100\\y=2.6=12\\2z=2.42=84\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=20\\y=12\\z=42\end{matrix}\right.\)
*Vậy \(\left(x;y;z\right)=\left(20;12;42\right)\) .
b)*Ta có: \(\frac{x}{3}\) = \(\frac{y}{4}\) ; \(\frac{y}{5}\) = \(\frac{z}{7}\)
\(\Rightarrow\) \(\frac{x}{15}\) = \(\frac{y}{20}\) ; \(\frac{y}{20}\) = \(\frac{z}{28}\)
\(\Rightarrow\) \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{28}\)
\(\Rightarrow\) \(\frac{2x}{30}\) = \(\frac{3y}{60}\) = \(\frac{z}{28}\) .\(và2x+3y-z=124\)
\(\Rightarrow\) Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{2x}{30}\) = \(\frac{3y}{60}\) = \(\frac{z}{28}\) = \(\frac{2x+3y-z}{30+60-28}\) = \(\frac{124}{62}\) = \(2\)
\(\Rightarrow\left\{{}\begin{matrix}2x=2.30=60\\3y=2.60=120\\z=2.28=56\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=56\end{matrix}\right.\)
*Vậy \(\left(x;y;z\right)=\left(30;40;56\right)\) .
c) *Ta có: \(\frac{2x}{3}\) = \(\frac{3y}{4}\) = \(\frac{4z}{5}\)
\(\Rightarrow\) \(\frac{40x}{60}\) = \(\frac{45y}{60}\) = \(\frac{48z}{60}\)
\(\Rightarrow40x=45y=48z\)
\(\Rightarrow\) \(\frac{40x}{720}\) = \(\frac{45y}{720}\) = \(\frac{48z}{720}\)
\(\Rightarrow\) \(\frac{x}{18}\) = \(\frac{y}{16}\) = \(\frac{z}{15}\) .\(vàx+y+z=49\)
\(\Rightarrow\) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{18}\) = \(\frac{y}{16}\) = \(\frac{z}{15}\) = \(\frac{x+y+z}{18+16+15}\) =\(\frac{49}{49}\) = \(1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.18=18\\y=1.16=16\\z=1.15=15\end{matrix}\right.\)
*Vậy \(\left(x;y;z\right)=\left(18;16;15\right)\) .
d) *Ta có: Đặt: \(\frac{x}{2}\) = \(\frac{y}{3}\) = \(k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)
\(Mà\) \(xy=54\) (theo đề bài)
\(\Rightarrow\) \(xy=2k.3k=54\)
\(\Rightarrow\) \(xy=6k^2=54\)
\(\Rightarrow\) \(k^2=9\)
\(\Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)
~ Với \(k=3\) thì: \(\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\end{matrix}\right.\)
~ Với \(k=-3\) thì: \(\left\{{}\begin{matrix}x=2.\left(-3\right)=-6\\y=3.\left(-3\right)=-9\end{matrix}\right.\)
*Vậy \(\left(x;y\right)=\left\{\left(6;9\right),\left(-6;-9\right)\right\}\) .
*Chúc bạn hok tốt!
Mình thấy bạn hỏi dạng bài này nhiều rồi mà. nguyen ngoc son
c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(xyz=810\)
Đặt:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
Ta có:
\(x=2k\)
\(y=3k\)
\(z=5k\)
Thế vào xyz = 810, ta có:
\(2k.3k.5k=810\)
\(30.k^3=810\)
\(k^3=27\)
\(\Rightarrow k=3\)
Tới đây tự tính luôn ok :))
Theo đề ta có:
\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)
=> \(\frac{x}{9}=\frac{y}{7};\frac{y}{7}=\frac{z}{3}\)
Hay: \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
=> \(\frac{x}{9}=-3\)
\(\frac{y}{7}=-3\)
\(\frac{z}{3}=-3\)
=> x = -27
y = -21
x= -9
Bạn kiểm tra lại thử giúp mình nha! mấy bài sau bạn làm tương tự, nhớ tick đúng cho mình nha! Cảm ơn bạn!
đặt: x-1/2=y-2/3=z-3/4=k => x-1=2k;y-2=3k;z-3=4k
=> x= 2k +1 ;y = 3k+2; z = 4k+3
thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3y-x=50
ta được:
2.(2k+1)+3.(3k+2)-(4k+3)=50
4k+2+9k+6-4k-3=50
9k+5=50
9k=45
k=5
=>x=2.5+1=11
y=3.5+2=17
z=4.5+3=23
\(\text{Câu 2: }\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\text{Áp dụng tính chất của dảy tỉ số bằng nhau ta có:}\)
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{2x+3y+5z}{2.8+3.12+5.15}=\frac{127}{127}=1\)
\(\text{Suy ra: }\frac{x}{8}=1\Rightarrow x=8\)
\(\frac{y}{12}=1\Rightarrow y=12\)
\(\frac{z}{15}=1\Rightarrow z=15\)
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}=>\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
=> x=2.15=30
y=2.20=40
z=2.28=56