K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)   => \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)(1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

TỪ(1) => \(\frac{3x+3+2y+4+z+2}{6+6+4}=\frac{\left(3x+2y+z\right)+\left(3+4+2\right)}{16}\)

=\(\frac{105+9}{16}=\frac{57}{8}\)

b)tương tự câu a

15 tháng 8 2020

a) Ta có :\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)

=> \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)

Lại có 3x - 2y + z = 105

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}=\frac{3x+3-2y-4+z+2}{6-6+4}=\frac{\left(3x-2y+z\right)+3-4+2}{4}\) 

                                                                                                                      \(=\frac{105+1}{4}=\frac{106}{4}=26,5\)

=> x = 52 ; y = 77,5 ; z = 104

b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)

Đặt \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=k\Rightarrow\hept{\begin{cases}x^2=4k\\y^2=9k\\z^2=16k\end{cases}}\)

Lại có x2 - y2 + 2z2 = 108

=> 4k - 9k + 2.16k = 108

=> -5k + 32k = 108

=> 27k = 108

=> k = 4

=> x = \(\pm\)4 ; y = \(\pm\)6 ; z = \(\pm\)8

Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=> x ; y ; z cùng dấu

=> các cặp số (x;y;z) thỏa mãn bài toán là (-4;-6;-8) ; (4;6;8)

24 tháng 7 2019

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)

\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

24 tháng 7 2019

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)

áp dụng tính chất dãy tỉ số bằng nhau  ta có

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)

26 tháng 11 2014

1) ADTCDTSBN, ta có:

 \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)\(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4

\(\frac{x}{3}=4\)=> x = 3 . 4 = 12

\(\frac{y}{4}=4\)=> y = 4 . 4 = 16

\(\frac{z}{5}=4\)=> z = 5 . 4 = 20

Vậy x = 12

       y = 16

       z = 20

 

1 tháng 2 2015

x=12

y=16

z=20

24 tháng 7 2019

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

Theo đề bài ta có:
43x−2y=32z−4x=24y−3z43x−2y=32z−4x=24y−3z

⇒⇒4(2z-4x) = 3(3x-2y)
3(4y-3z) = 2(2z-4x)
Ta có:

4(2z-4x) = 3(3x-2y)⇒⇒8z-16x = 9x-6y⇒y=25x−8z6⇒y=25x−8z6 (1)

32z−4x=24y−3z⇒3(4y−3z)=2(2z−4x)

HT ( mặc dù hơi rối )

9 tháng 7 2017

a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)\(x^2-y^2+2z^2=108\)

Giải

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x^2-y^2+2z^2}{2^2-3^2+2.4^2}=\dfrac{108}{27}=4\)

\(\dfrac{x}{2}=4\Rightarrow x=4.2=8\)

\(\dfrac{y}{3}=4\Rightarrow y=4.3=12\)

\(\dfrac{z}{4}=4\Rightarrow z=4.4=16\).

9 tháng 7 2017

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Dựa vào t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x^2-y^2+2z^2}{2^2-3^2+2.4^2}=\dfrac{108}{27}=4\)

\(x=2.4=8\)

\(y=3.4=12\)

\(z=4.4=16\)