\(2x=3y=10z-2x-3y\) và \(x-y+z=-33\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(2x=3y=\frac{2x+3y}{1+1}=\frac{2x+3y}{2}=10z-2x-3y\)

\(=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{2x+3y+\left(10z-2x-3y\right)}{2+1}=\frac{10z}{3}=\frac{z}{\frac{3}{10}}\)

Lại áp dụng tính chất của dãy tỉ số = nhau:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{3}{10}}=\frac{x-y+z}{\frac{1}{2}-\frac{1}{3}+\frac{1}{10}}=\frac{-33}{\frac{7}{15}}=-33.\frac{15}{7}=\frac{-495}{7}\)

\(\Rightarrow\begin{cases}x=\frac{-495}{7}.\frac{1}{2}=\frac{-495}{14}\\y=\frac{-495}{7}.\frac{1}{3}=\frac{-165}{7}\\z=\frac{-495}{7}.\frac{3}{10}=\frac{-297}{14}\end{cases}\)

Vậy \(x=\frac{-495}{14};y=\frac{-165}{7};z=\frac{-297}{14}\)

 

24 tháng 10 2016

ngu nguoi

19 tháng 10 2016

\(2x=3y=10z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{10}}\)và x + y- z = 95

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{10}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{10}}=\frac{95}{\frac{11}{15}}=\frac{1425}{11}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{1425}{11}\Rightarrow x=\frac{1425}{22}\\\frac{y}{\frac{1}{3}}=\frac{1425}{11}\Rightarrow y=\frac{475}{11}\\\frac{z}{\frac{1}{10}}=\frac{1425}{11}\Rightarrow z=\frac{285}{22}\end{cases}}\)

19 tháng 10 2016

2x = 3y = 10z =>2x/30=3y/30=10z/30

=> x/15 = y/10 =z/3

ADTCDTSBN 

Ta co x/15 = y/10 = z/3 = x+y-z/15+10-3 =95/22

x/15=95/22=>x = 1425/22

y/10=95/22=> y = 475/11

z/3 = 95/22 =>z=285/22

13 tháng 1 2017

chịu chẳng hiểu noi đề viết cái gì

6 tháng 1 2018

https://olm.vn/hoi-dap/question/148595.html
vào đấy tham khảo nhé 

^_^

6 tháng 1 2018

c) \(4x=3y;7y=5z\)\(2x+3y-z=186\)

\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{15}=\frac{x}{20}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất Bắc Cầu

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2z+3y-z}{30+60-28}=\frac{186}{62}=3\)

Vậy x=45;y=60;z=84

5 tháng 8 2018

câu b nhé

nhắn tin vs mình r mình chỉ cho nhé

31 tháng 8 2021

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

31 tháng 8 2021

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)

3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

17 tháng 7 2018

a) Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{24}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{48}=\frac{5x+y-2z}{50+6-48}=\frac{28}{8}=\frac{7}{2}\)

\(\Rightarrow x=\frac{7}{2}.10=35\)

     \(y=\frac{7}{2}.6=21\)

     \(z=\frac{7}{2}.24=84\)

b) Ta có: \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

=> x = 3.15 = 45

     y = 3.20 = 60

     z = 3.28 = 84

c) Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> x = 2.10 = 20

     y = 2.15 = 30

     z = 2.21 = 42

d) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12\left(x+y+z\right)}{18+16+15}=\frac{12.49}{49}=12\)

=> 12x = 216 => x =18

     12y = 192 => y = 16

     12z = 180 => z = 15

e) \(\frac{x-1}{2}=\frac{2\left(x-1\right)}{2}=\frac{2x-2}{2};\frac{y-2}{3}=\frac{3\left(y-2\right)}{3}=\frac{3y-6}{3}\)

=> 2x-2/4 = 3y-6/9 = z-3/4

=> (2x-2+3y-6-z+3)/(4+9-4) = (49-5)/9 = 44/9

=> x-1 = 44/9 .2 = 88/9

     x = 97/9

=> y-2 = 44/9 . 3 = 44/3

    y = 50/3

=> z - 3 = 44/9 . 4 = 176/9

     z  = 203/9

Vậy ...

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405