K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

a ) \(x^2-x+1\)

\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)

20 tháng 6 2017

Bạn làm giúp mih thêm vài bài nữa đc k

23 tháng 6 2017

a, \(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3

\(\Leftrightarrow A=9-12+1=-2\)

Vậy A = -2 khi x + y = 3

b, \(B=x^2+4y^2-2x+10+4xy-4y\)

\(=x^2+4xy+4y^2-2x-4y+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 có:
\(B=25-10+10=25\)

Vậy B = 25 khi x + 2y = 5

10 tháng 9 2018

a) Ta có:

\(A=x^2+2xy+y^2-4x-4y+1\)

\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3 vào A

\(A=3^2-4.3+1\)

\(A=9-12+1\)

\(A=-2\)

b) Sửa đề:

\(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(B=x^2+2x+y^2-2y-2xy+37\)

\(B=\left(x^2+y^2+1+2x-2y-2xy\right)+36\)

\(B=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào B

\(B=\left(7+1\right)^2+36\)

\(B=100\)

c) Ta có:

\(C=x^2+4y^2-2x+10+4xy-4y\)

\(C=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)

\(C=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 vào C

\(C=5^2-2.5+10\)

\(C=25-10+10\)

\(C=25\)

12 tháng 9 2020

a) x2 - y2 + 4x + 4

= ( x2 + 4x + 4 ) - y2

= ( x + 2 )2 - y2

= ( x + 2 - y )( x + 2 + y )

b) x2 - 2xy + y2 - 1

= ( x2 - 2xy + y2 ) - 1

= ( x - y )2 - 12

= ( x - y - 1 )( x - y + 1 )

c) x2 - 2xy + y2 - 4

= ( x2 - 2xy + y2 ) - 4

= ( x - y )2 - 22

= ( x - y - 2 )( x - y + 2 )

d) x2 - 2xy + y2 - z2

= ( x2 - 2xy + y2 ) - z2

= ( x - y )2 - z2

= ( x - y - z )( x - y + z )

e) 25 - x2 + 4xy - 4y2

= 25 - ( x2 - 4xy + 4y2 )

= 52 - ( x - 2y )2

= ( 5 - x + 2y )( 5 + x - 2y )

f) x2 + y2 - 2xy - 4z2

= ( x2 - 2xy + y2 ) - 4z2

= ( x - y )2 - ( 2z )2

= ( x - y - 2z )( x - y + 2z )

1 tháng 8 2017

a, = 8x3 + 27x3

b, = x3 - 4 y3

2 câu còn lại bn tự làm nha

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)