Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+3^3+3^4+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=\left[3^2+3^3+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)
\(2A=3^{101}-3\)
\(A=\frac{3^{101}-3}{2}\)
Ta lại có : \(2A+3=3^x\)
=> \(2\cdot\frac{3^{101}-3}{2}+3=3^x\)
=> \(3^{101}-3+3=3^x\)
=> 3101 = 3x
=> x = 101
Vậy x = 101
\(3A=3^2+3^3+...+3^{101}\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow2A+3=3^{101}=3^x\)
\(\Rightarrow x=101\)
b0 Ta có: \(|x-y|\ge0\forall x,y\)
\(\left(x-16\right)^6\ge0\forall x\)
\(\Rightarrow|x-y|+\left(x-16\right)^6\ge0\forall x,y\)
Mà theo đầu bài \(|x-y|+\left(x-16\right)^6\le0\)
\(\Leftrightarrow|x-y|+\left(x-16\right)^6=0\)
\(\Leftrightarrow\hept{\begin{cases}|x-y|=0\\\left(x-16\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x-16=0\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}y=16\\x=16\end{cases}}\)
VẬY x=16 và y=16
Cảm ơn Lê Tài Bảo Châu nhá!!!!!!
Nhưng bạn làm nốt hộ mik nhé!!!
N = ( x - y )( x - 2y )( x - 3y )( x - 4y ) + y4
= [ ( x - y )( x - 4y ) ][ ( x - 2y )( x - 3y ) ] + y4
= ( x2 - 5xy + 4y2 )( x2 - 5xy + 6y2 ) + y4
Đặt t = x2 - 5xy + 5y2
N = ( t - y2 )( t + y2 ) + y4
= t2 - y4 + y4
= t2 = ( x2 - 5xy + 5y2 )2
Vì x, y thuộc Z => x2 thuộc Z ; -5xy thuộc Z ; 5y2 thuộc Z
=> ( x2 - 5xy + 5y2 )2 là một số chính phương
=> đpcm
\(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)
\(=\left(x-y\right)\left(x-4y\right)\left(x-2y\right)\left(x-3y\right)+y^4\)
\(=\left(x^2-5xy+4y^2\right)\left(x^2-5xy+6y^2\right)+y^4\)
Đặt \(x^2-5xy+5y^2=t\)
\(\Rightarrow\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4=t^2\)
\(=\left(x^2-5xy+5y^2\right)^2\)
Vì \(x,y\inℤ\)\(\Rightarrow\left(x^2-5xy+5y^2\right)^2\)là số chính phương
hay \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)là số chính phương ( đpcm )