K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2020

\(\left(24-4y\right)^{2018}+\left|x^2-4\right|^{2019}\le0\left(1\right)\)

Vì \(\hept{\begin{cases}\left(24-4y\right)^{2018}\ge0;\forall x,y\\\left|x^2-4\right|^{2019}\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(24-4y\right)^{2018}+\left|x^2-4\right|^{2019}\ge0;\forall x,y\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}\left(24-4y\right)^{2018}=0\\\left|x^2-4\right|^{2019}=0\end{cases}}\)

                      \(\Leftrightarrow\hept{\begin{cases}y=6\\x=\pm2\end{cases}}\)

Vậy \(\left(x,y\right)\in\left\{\left(2;6\right);\left(-2;6\right)\right\}\)

9 tháng 6 2018

Bài 1 :

\(3x+5=2\left(x-\frac{1}{4}\right)\)

\(\Leftrightarrow3x+5=2x-\frac{1}{2}\)

\(\Leftrightarrow5+\frac{1}{2}=2x-3x\)

\(\Leftrightarrow\frac{11}{2}=-x\)

\(\Leftrightarrow\frac{-11}{2}=x\)

Vậy \(x=\frac{-11}{2}\)

Bài 2:

a, \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{2018}{2019}\right|\ge0\\\left|z-3\right|\ge0\end{cases}}\)

       Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)

\(\Rightarrow+,\left|x+\frac{19}{5}\right|=0\)

\(\Leftrightarrow x+\frac{19}{5}=0\)

\(\Leftrightarrow x=\frac{-19}{5}\)

\(\Rightarrow+,\left|y+\frac{2018}{2019}\right|=0\)

\(\Leftrightarrow y+\frac{2018}{2019}=0\)

\(\Leftrightarrow y=\frac{-2018}{2019}\)

\(\Rightarrow+,\left|z-3\right|=0\)

\(\Leftrightarrow z-3=0\)

\(\Leftrightarrow z=3\)

Vậy \(\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-2018}{2019}\\z=3\end{cases}}\)

b, Ta có : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)

Vì : \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y+4\right|\ge0\\\left|z-5\right|\ge0\end{cases}}\)

Mà : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)

\(\Rightarrow+,\left|x-\frac{1}{2}\right|\ge0\)

\(\Rightarrow x\inℚ\)

\(\Rightarrow+,\left|2y+4\right|\ge0\)

\(\Rightarrow y\inℚ\)

\(\Rightarrow+,\left|z-5\right|\ge0\)

\(\Rightarrow z\inℚ\)

Vậy chỉ cần \(\hept{\begin{cases}x\inℚ\\y\inℚ\\z\inℚ\end{cases}}\)thì thỏa mãn.

24 tháng 3 2020

234*(-26)+134*26

a)\(2019-\left|x-2019\right|=x\)

\(\Rightarrow2019-x=\left|x-2019\right|\)

=>\(\left|x-2019\right|=-\left(x-2019\right)\)

=>\(x-2019\le0\)

=>\(x\le2019\)

b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)

        \(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)

\(\left|x+y-z\right|\ge0\forall x,y,z\)

=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)

mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)

6 tháng 11 2019

a, Ta có:

\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)

Xét x<2019 thì |x-2019|=-x+2019

Khi đó: 2019-(-x+2019)=x

\(\Leftrightarrow\)-x+2019=2019-x

\(\Leftrightarrow\)-x+2019+x=2019

\(\Leftrightarrow\)0x+2019=2019

\(\Leftrightarrow\)0x=0     (thỏa mãn)

Xét 2019\(\le\)x thì |x-2019|=x-2019

Khi đó 2019-(x-2019)=x

\(\Leftrightarrow\)2019-x+2019=x

\(\Leftrightarrow\)4038-x=x

\(\Leftrightarrow\)4038=2x

\(\Leftrightarrow\)x=2019(thỏa mãn)

Vậy .......................................................!!!

a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)

Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)

Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)

Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)

\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)

\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)

Vậy \(y=5;x=2019\)

\(y=-5;x=2019\)

4 tháng 1 2019

\(\left|y-2018\right|=2018-y\)

\(\left|y-2018\right|\ge0\Rightarrow2018-y\ge0\Rightarrow y\le2018\)

\(\Leftrightarrow\orbr{\begin{cases}y-2018=2018-y\\-y+2018=2018-y\end{cases}}\Leftrightarrow\orbr{\begin{cases}2y=2.2018\\0=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2018\left(TMĐK\right)\\y\le2018\end{cases}}}\)

cái đề bị làm sao ko bn(hay boul :D) ??? x,y thuộc N chứ ????? ( y bé hơn hoặc bằng 2018)

coi nha: \(y=-5\Rightarrow2018-\left(-5\right)=2023=2^x+2019\Rightarrow2^x=4\Rightarrow x=2\)

\(y=-9\Rightarrow2018-y=2018-\left(-9\right)=2027\Rightarrow2^x=8\Rightarrow x=3\)

\(y=-17\Rightarrow2018-\left(-17\right)=2035=2^x+2019\Rightarrow2^x=16\Rightarrow x=4\)

xét đến mai ????

còn nếu x,y thuộc N:

\(y\le2018\left(\text{lúc nãy chứng minh rồi}\right)\Rightarrow0\le y\le2018\left(\text{vì y thuộc N}\right)\Rightarrow2018-y\le2018\)

\(2^x+2019\ge2020\)=> ko có g/trị x và y nào đồng thời t/m \(2^x+2019=\left|y-2018\right|=2018-y\)

p/s: có gì sai bỏ qua :)