K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có:  \(\left|x+4\right|< 3\)

\(\Rightarrow\left|x+4\right|\in\left\{0;1;2\right\}\)

\(\Rightarrow x+4\in\left\{0;\pm1;\pm2\right\}\)

Ta có bảng

x+401-12-2
x-4-3-5-2-6

Vậy...

b) ta có: \(\left|x-14+17\right|+\left|y+10-12\right|\le0\)

Mà \(\left|x-14+17\right|+\left|y+10-12\right|\ge0\)

\(\Rightarrow\left|x-14+17\right|+\left|y+10-12\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|x-14+17\right|=0\\\left|y+10-12\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-14+17=0\\y+10-12=0\end{cases}\Rightarrow}\hept{\begin{cases}x=14-17\\y=-10+12\end{cases}\Rightarrow}\hept{\begin{cases}x=-3\\y=2\end{cases}}}\)

Vậy ....

hok tốt!!

á)  | x + 4 | < 3

Ta lại có | x + 4 | ≥ 0  \(\forall\) x  ∈  Z

Mà x ∈  Z

<=> | x + 4 | ∈  { 0 ; 1 ; 2 }

\(\Leftrightarrow x+4\in\left\{0;1;-1;2;-2\right\}\)

<=> x  ∈  { - 4 ; - 3 ; - 7 ; - 2 ; - 6 }

Vậy ...

b) | x - 14 + 17 | + | y + 10 - 12 |  ≤ 0 

<=> | x + 3 | + | y - 2 |  ≤ 0

+) Lại có \(\hept{\begin{cases}\left|x+3\right|\text{≥}0\\\left|y-2\right|\text{≥}0\end{cases}\forall x;y}\)

<=> | x + 3 | + | y - 2 | ≥  0  \(\forall\) x ; y

Do đó để | x + 3 | + | y - 2 | ≤ 0  thì \(\hept{\begin{cases}\left|x+3\right|=0\\\left|y-2\right|=0\end{cases}}\)

<=> \(\hept{\begin{cases}x+3=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-3\\y=2\end{cases}}\)

Vậy ..... <=> x = - 3 và y = 2

24 tháng 3 2020

a/ | x + 4 | < 3

=> \(\left|x+4\right|\in\left\{0;1;2\right\}\)

=> \(x+4\in\left\{0;1;-1;2;-2\right\}\)

=> \(x\in\left\{-4;-3;-5;-2;-6\right\}\)

b/ | x - 14 + 17 | + | y + 10 - 12 | ≤ 0

*Trường hợp 1: | x - 14 + 17 | + | y + 10 - 12 | < 0

=> Vô lí.

*Trường hợp 2: | x - 14 + 17 | + | y + 10 - 12 | = 0

Ta có: \(\left|x-14+17\right|\ge0\) ; \(\left|y+10-12\right|\ge0\)

=> \(\left|x-14+17\right|+\left|y+10-12\right|\ge0\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left|x-14+17\right|=0\\\left|y+10-12\right|=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x-14+17=0\\y+10-12=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+3=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0-3=-3\\y=0+2=2\end{matrix}\right.\)

Vậy: x = -3; y = 2

24 tháng 3 2020

thanks ạ

Trả lời:

1) \(0< x-1\le2\)

\(\Rightarrow x-1\in\left\{1;2\right\}\)

\(\Rightarrow x\in\left\{2;3\right\}\)

#Huyền Anh

2) \(3\le x-2< 5\)

\(\Rightarrow x-2\in\left\{3;4\right\}\)

\(\Rightarrow x\in\left\{5;6\right\}\)

#Huyền Anh

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

28 tháng 12 2017

thank Đạt nhe đăng hộ tao