Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy+x+y=30
xy+x+y +1=31
xy+x*1+y*1+1*1=31
x[y+1]+1[y+1]=31
[y+1][x+1]=31
suy ra y+1 =31 hoac x+1=1
y+1 | 31 | y | 30 |
x+1 | 1 | x | x |
hoac nguoc lai
xy = 30
=> \(x,y\in\)Ư(30)
=> \(x,y\in\left\{1;2;3;5;6;10;15;30\right\}\)
x ( y + 2 ) = 15
=> x, y+ 2 \(\inƯ\left(15\right)\)
= \(x,y+2\in\left\{1;3;5;15\right\}\)
\(xy=30\)
\(\Rightarrow\left(x,y\right)=\left(1,30\right);\left(30,1\right);\left(5,6\right);\left(6,5\right);\left(15,2\right);\left(2,15\right);\left(3,10\right);\left(10,3\right)\)
\(x\left(y+2\right)=15\)
\(\Rightarrow\)Ta có bảng sau :
y+2 | 3 | 5 | 1 | 15 |
y | 1 | 3 | y\(\notin\)N | 13 |
x | 5 | 3 | 15 | 1 |
xy + 7y + x = 19
\(\Rightarrow\)y(x+7) + x + 7 = 26
\(\Rightarrow\)( x + 7 ) ( y + 1) = 26
\(\Rightarrow\)ta có bảng sau :
x+7 | 1 | 26 | 2 | 13 |
y+1 | 26 | 1 | 13 | 2 |
x | \(x\notin N\) | 19 | \(x\notin N\) | 6 |
y | 25 | \(y\notin N\) | 12 | \(y\notin N\) |
xy+x+y=30
<=> x(y+1)+y+1=31
<=> (x+1)(y+1)=31
=> x+1 ; y+1 thuộc Ư(31)={1,31}
Ta có bảng
x+1 | 1 | 31 |
y+1 | 31 | 1 |
x | 0 | 30 |
y | 30 | 0 |
Vậy ta có 2 cặp x,y thõa mãn : x,y=(0,30);(30,0)
b) xy+2x+5y=7
=> x(y+2)+5y+10=17
=> x(y+2)+5(y+2)=17
=> (x+5)(y+2)=17
=>x+5;y+2 thuộc Ư(17)={1,17}
Ta có bảng :
x+5 | 1 | 17 |
y+2 | 17 | 1 |
x | -4 | 12 |
y | 15 | -1 |
Vậy ko có cặp x,y nào thõa mãn với điều kiện x,y thuộc N
c) (x+5)(y-3)=15
=>x+5;y-3 thuộc Ư(15)={1,3,5,15}
Ta có bảng :
x+5 | 1 | 3 | 5 | 15 |
y-3 | 15 | 5 | 3 | 1 |
x | -4 | -2 | 0 | 10 |
y | 18 | 8 | 6 | 4 |
loại | loại |
Vậy ta có 2 cặp x,y thõa mãn (0,6);(10,4)
d) (2x-1)(y+2)=24
=> 2x-1;y+2 thuộc Ư(24)={1,2,3,4,6,8,12,24}
Ta có bảng :
2x-1 | 1 | 2 | 3 | 4 | 6 | 8 | 12 | 24 |
y+2 | 24 | 12 | 8 | 6 | 4 | 3 | 2 | 1 |
x | 1 | 1/2 | 2 | 3/2 | 7/2 | 9/2 | 13/2 | 25/2 |
y | 22 | 10 | 6 | 4 | 2 | 1 | 0 | -1 |
Vậy ta có các cặp x,y thõa mãn : (1,22);(2,6)
\(xy+x+y=30\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=31\)
\(\left(y+1\right)\left(x+1\right)=31=1\cdot31=31\cdot1=-1\cdot-31=-31-1\)
Thế vào là xong!
Câu a)
Bn lập các số có tích là 15 kể cả số âm luôn nhe rồi thế vào tìm x và y loại các trường hợp x và y ko thuộc N
Câu b)
Đang suy nghĩ ........
\(xy+x+y=30\)
\(\Rightarrow x\left(y+1\right)+y+1=31\)
\(\Rightarrow\left(y+1\right)\left(x+1\right)=31\)
Lập bảng => x, y
xy=x*10+y+x+y
=11x+2y
=>x=2
y=4