K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)

\(\Leftrightarrow x^2+2x^2y^2+2y^2-x^2y^2-2x^2-2=0\)

\(\Leftrightarrow x^2y^2-x^2+2y^2-2=0\)

\(\Leftrightarrow\left(x^2y^2-x^2\right)+\left(2y^2-2\right)=0\)

\(\Leftrightarrow x^2\left(y^2-1\right)+2\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(y-1\right)\left(y+1\right)=0\)

Dễ thấy: \(x^2+2\ge2>0\forall x\) (vô nghiệm)

\(\Rightarrow\left[{}\begin{matrix}y-1=0\\y+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

4 tháng 5 2024

đúng lúc mình đang cần cảm ơn anh zai

 

NV
22 tháng 2 2021

\(\Leftrightarrow x^2-1=2y^2\)

Do vế phải chẵn \(\Rightarrow\) vế trái chẵn \(\Leftrightarrow x\) lẻ

\(\Rightarrow x=2k+1\)

Pt trở thành: \(\left(2k+1\right)^2-1=2y^2\Leftrightarrow2\left(k^2+k\right)=y^2\)

Vế trái chẵn \(\Rightarrow\) vế phải chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn

\(\Rightarrow y=2\)

\(\Rightarrow x^2-9=0\Rightarrow x=3\)

Vậy \(\left(x;y\right)=\left(3;2\right)\)

3 tháng 3 2018

=> x^2 = 2y^2 + 1

+, Nếu y=3 => ko tồn tại x thuộc p

+, Nếu y khác 3 => y ko chia hết cho 3 => y^2 chia 3 dư 1 => 2y^2 chia 3 dư 2

=> x^2  = 2y^2+1 chia hết cho 3

=> x chia hết cho 3 ( vì 3 là số nguyên tố )

=> x = 3

=> y = 2

Vậy x=3 và y=2

Tk mk nha

13 tháng 2 2019

gõ lại đề đi nhưng nếu ghi đúng đề thì chỉ có x=y=0

13 tháng 2 2019

\(\left|x\right|+2\left|y\right|=0\)

Ta có\(\left|x\right|\ge0\forall x;\left|y\right|\ge0\Rightarrow2\left|y\right|\ge0\forall y\)

\(\Rightarrow\left|x\right|+2\left|y\right|\ge0\forall x;y\)

\(\Rightarrow\left|x\right|+2\left|y\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

\(3\left|x\right|+2\left|y\right|=0\)

Ta có \(3\left|x\right|\ge0\forall x;2\left|y\right|\ge0\forall y\)

\(\Rightarrow3\left|x\right|+2\left|y\right|\ge0\forall x,y\)

\(\Rightarrow3\left|x\right|+2\left|y\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}3x=0\\2y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

p/s : sai thôi