Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(\frac{xyz+x+z}{yz+1}=\frac{10}{7}\Rightarrow\frac{x\left(yz+1\right)+z}{yz+1}=\frac{10}{7}\)
\(\Leftrightarrow x+\frac{z}{yz+1}=\frac{10}{7}\Leftrightarrow x+\frac{1}{\frac{yz+1}{z}}=\frac{10}{7}\)
\(\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{3}{7}=1+\frac{1}{\frac{7}{3}}=1+\frac{1}{2+\frac{1}{3}}\)
Nên x=1,y=2,z=3 bài này thiếu điều kiện x,y,z nhé
2,bài 2 để mai anh xem nha
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
Ta có:
\(\frac{x}{2}+\frac{y}{3}=\frac{x+y}{2+3}\)
\(\Rightarrow\frac{3x+2y}{6}=\frac{x+y}{5}\)
\(\Rightarrow5\left(3x+2y\right)=6\left(x+y\right)\)
\(\Rightarrow15x+10y=6x+6y\)
\(\Rightarrow9x+4y=0\)
\(\Rightarrow9x=-4y\)
\(\Rightarrow\frac{x}{y}=-\frac{9}{4}\)
Vậy, những cặp số \(\left(x,y\right)\)thỏa mãn đầu bài là những cặp số có tỷ lệ là \(-\frac{9}{4}\).
Ví dụ: \(\left(-9,4\right),\left(-18,8\right),\left(18,-8\right),...\)
a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)
(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)
(=) \(\left(b-a\right).\left(a-b\right)=ab\)
Vì a,b là 2 số dương
=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\)
Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
b, Cộng vế với vế của 3 đẳng thức ta có :
\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)
(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)
(=) \(x+y+z=\frac{-5}{12}\)
Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)
Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)
Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)
Ta có: \(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)
=> (2x - y).3 = (x+y) .2
6x - 3y = 2x + 2y
6x - 2x = 3y + 2y
4x = 5y
=> \(\frac{x}{5}\)=\(\frac{y}{4}\)
Vậy tỉ số \(\frac{x}{y}\)=\(\frac{5}{4}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=2y+3y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Vậy \(\frac{x}{y}=\frac{5}{4}\)
Ta có : \(\frac{2x-y}{x+y}=\frac{2}{3}\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\Leftrightarrow6x-3y=2x+2y\Leftrightarrow4x=5y\Leftrightarrow\frac{x}{y}=\frac{5}{4}\)
Vì \(\frac{2x-y}{x+y}=\frac{2}{3}=>\left(2x-y\right).3=\left(x+y\right).2=>6x-3y=2x+2y\)
\(=>6x-2x=2y-\left(-3y\right)=>6x-2x=2y+3y=>4x=5y=>\frac{x}{y}=\frac{5}{4}\)
Vậy tỉ số x/y=5/4
=> \(\frac{x}{y}=\frac{4}{5}\)
=> x \(\in\) B(4) (khác 0)={4; 8; 12; 16; 20;...}
=> y \(\in\) B(5) (khác 0)={5; 10; 15; 20; 25;...}
(Có vô số cặp x,y; từng cặp sắp xếp theo thứ tự từ trái qua phải).