Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2x + 1 . 3y = 10x
=> 2x.3y.2 = 10x
=> 3y.2 = 5x
=> 3y.2 = (...5)
=> 3y = (...5) : 2
Vì 5y tận cùng là 5
=> 5y không chia hết cho 2
=> Không tồn tại x;y \(\inℕ\)thỏa mãn
=> \(x;y\in\varnothing\)
b) 10x : 5y = 20y
=> 10x = 4y
=> x = y = 0
c) (2x - 15)5 = (2x - 15)3
(2x - 15)5 - (2x - 15)3 = 0
=> (2x - 15)3[(2x - 15)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-15=0\\2x-15=\pm1\end{cases}}\Rightarrow2x-15\in\left\{0;1;-1\right\}\)
=> \(x\in\left\{7,5;8;7\right\}\)
Vì x là số tự nhiên => \(x\in\left\{7;8\right\}\)
\(\frac{-5}{x}=\frac{-y}{8}=\frac{18}{72}\)
\(\Leftrightarrow\frac{-5}{x}=\frac{-y}{8}=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}-\frac{5}{x}=\frac{1}{4}\\-\frac{y}{8}=\frac{1}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5.4:1\\-y=8.1:4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-20\\-y=2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-20\\y=-2\end{cases}}}\)
vậy x=-20 và y=-2
Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Leftrightarrow7x-21=5x+25\)
\(\Leftrightarrow7x-5x=21+25\)
\(\Leftrightarrow2x=46\)
\(\Rightarrow x=46:2=23\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Rightarrow x^2=\left(\pm8\right)^2\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(7x-21=5x+25\)
\(7x-5x+25=21\)
\(2x+25=21\)
\(2x=-4\Rightarrow x=-2\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x+1\right)\left(x-1\right)\)
\(63=x\left(x-1\right)+1\left(x-1\right)\)
\(63=x^2-x+x-1\)
\(x^2=63+1=64\)
\(x=\left\{\pm8\right\}\)
c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)
\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)
\(x\left(x+4\right)+4\left(x+4\right)=40\)
\(x^2+4x+4x+16=40\)
\(x^2+8x=40-16=24\)
\(x\left(x+8\right)=24\)
\(x\in\left\{\varnothing\right\}\)
d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)
\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)
\(x^2-2x+2x-4=x^2+3x-x-3\)
\(\)\(x^2-4=x^2+2x-3\)
\(\Leftrightarrow x^2-x^2-2x+3=4\)
\(-2x+3=4\)
\(-2x=1\)
\(x=-\dfrac{1}{2}\)