Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
\(\left(x+2y\right)⋮5\Rightarrow3\left(x+2y\right)=\left(3x+6y\right)⋮5\)
Ta có \(\left(3x+6y\right)-\left(3x-4y\right)=10y⋮5\)
Mà \(\left(3x+6y\right)⋮5\Rightarrow\left(3x-4y\right)⋮5\)
Do \(x^2+y^2\)= (x-y)(x+y)=4=1.4=2.2=(-1)(-4)=(-2)(-2).
Khi đó ta chỉ tìm được x=\(\orbr{\begin{cases}2\\-2\end{cases}}\), y=0.
X2 + Y2 = 4
X x X + Y x Y = 4
(X + Y) x 2 = 4
X + Y = 4 : 2
X + Y = 2
Vậy X và Y có thể bằng 1 hoặc 0.
\(\frac{x}{6}\)-\(\frac{1}{12}\)=\(\frac{2}{y}\)
\(\rightarrow\)\(\frac{2x}{12}\)-\(\frac{1}{12}\)=\(\frac{2}{y}\)
\(\rightarrow\)\(\frac{2x-1}{12}\)=\(\frac{2}{y}\)
\(\Rightarrow\)(2x-1).y=12.2=24 nên 2x-1 và y\(\in\)Ư(24) mà Ư(24)={1;-1;2;-2;3;-3;4;-4;6;-6;8;-8;12;-12;24;-24}
vì 2x-1 là số lẻ nên 2x-1={+_1;+_3}nên ta có bảng:
2x-1 | 1 | -1 | 3 | -3 |
y | 24 | -24 | 8 | -8 |
x | 1 | 0 | 2 | -1 |
vậy x,y\(\in\){(1;24)(0;-24)(8;2)(-8;-1)
3200 = 32.100= ( 32)100
2300 = 23.100 = (23)100
Vì 32 > 23 nên (32)100 > ( 23)100 hay 3200> 2300
1) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Do 9^100 > 8^100 => 3^200 > 2^300
2) 4x+3 - 3.4x+1= 13.411
4x+1.42 - 3.4x+1= 13.411
4x+1 ( 42 - 3) = 13.411
4x+1 . 13 = 13. 411
4x+1 = 411
=> x + 1 = 11
=> x= 10