K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2016

\(2\left(a+b+c\right)=a^2+b^2+c^2+3\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}a-1=0\\b-1=0\\c-1=0\end{array}\right.\)\(\Leftrightarrow a=b=c=1\)

7 tháng 9 2016

sai đề r`

 

6 tháng 11 2016

mk hỏi thật nha

sao bn ngu thêuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheuccheucche

mk ko ngờ đóoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoe
7 tháng 11 2016

sao bạn lại nói thếkhocroi mk k bít mới hỏi chứ khocroi

Bài 1: 

\(=2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]-3\left[\left(x-y\right)^2+2xy\right]\)

\(=2\cdot\left[2^3+3\cdot2\cdot xy\right]-3\cdot\left[2^2+2xy\right]\)

\(=2\left(8+6xy\right)-3\left(4+2xy\right)\)

\(=16+12xy-12-6xy=6xy+4\)

Bài 4: 

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=2^3-3\cdot2\cdot\left(-6\right)=8+36=44\)

9 tháng 12 2016

bạn có ghi sai đề ko v

7 tháng 11 2016

a/ Áp dụng BĐT Bunhiacopxki :

\(5^2=\left(1.x+2.y\right)^2\le\left(1^2+2^2\right)\left(x^2+y^2\right)\Leftrightarrow5A\ge25\Leftrightarrow A\ge5\)

Đẳng thức xảy ra khi \(\begin{cases}x=\frac{y}{2}\\x+2y=5\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=2\end{cases}\)

Vậy MaxA = 5 <=> (x;y) = (1;2)

b/ Áp dụng BĐT Cauchy : \(5=x+2y\ge2\sqrt{2xy}\Rightarrow xy\le\frac{25}{8}\)

Đẳng thức xảy ra khi \(\begin{cases}x=2y\\x+2y=5\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{5}{2}\\y=\frac{5}{4}\end{cases}\)

Vậy MaxA = 25/8 <=> (x;y) = (5/2;5/4)

25 tháng 12 2016

câu a tìm mẫu thức chung, rồi đk là mtc khác 0

câu b rút dễ mà

câu c đập vô thôi

27 tháng 12 2016

thank bạn nha vui

2 tháng 7 2016

\(A=3x^2+4y^2+4xy+2x-4y+26\)

\(=4y^2+\left(4xy-4y\right)+\left[\left(x-1\right)^2-\left(x-1\right)^2\right]+3x^2+2x+26\)

\(=\left[\left(2y^2\right)+4y\left(x-1\right)+\left(x-1\right)^2\right]-\left(x^2-2x+1\right)+3x^2+2x+26\)

\(=\left(2y+x-1\right)^2+2x^2+4x+25=\left(2y+x-1\right)^2+2\left(x^2+2x+1\right)+23\)

\(=\left(2y+x-1\right)^2+2\left(x+1\right)^2+23\ge23\) với mọi x,y thuộc R.

Đẳng thức xảy ra  \(\Leftrightarrow\begin{cases}2y+x+1=0\\x+1=0\end{cases}\Leftrightarrow\begin{cases}x=-1\\y=1\end{cases}\) 

Vậy \(A_{min}=23\) khi x=-1 và y=1

 

17 tháng 9 2017

ta có : \(m=x^2-x+1=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi \(x\)

\(\Rightarrow\) giá trị nhỏ nhất của \(m=x^2-x+1\)\(\dfrac{3}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

vậy giá trị nhỏ nhất của \(m=x^2-x+1\)\(\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

31 tháng 7 2016

+1 hay -1

31 tháng 7 2016

\(x^2-x-1=x^2-2x\frac{1}{2}+\frac{1}{4}+\left(-1-\frac{1}{4}\right)=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)