=21

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2\left(x+1\right)^2+3y^2=21\)

Ta có: x,y nguyên

=>\(\left(x+1\right)^2;y^2\) là các số chính phương

mà \(2\left(x+1\right)^2+3y^2=21\) 

nên \(\left[2\left(x+1\right)^2;3y^2\right]\in\left\{\left(18;3\right)\right\}\)

=>\(\left(\left(x+1\right)^2;y^2\right)\in\left(9;1\right)\)

=>\(\left(x+1;y\right)\in\left\{\left(3;-1\right);\left(3;1\right);\left(-3;-1\right);\left(-3;1\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(2;-1\right);\left(2;1\right);\left(-4;-1\right);\left(-4;1\right)\right\}\) 

20 tháng 6 2016

Ta có : \(\frac{x^2-3}{x^2-1}=\frac{x^2-1-2}{x^2-1}=\frac{x^2-1}{x^2-1}-\frac{2}{x^2-1}=1-\frac{2}{x^2-1}\)

Để Biểu thức trên nguyên thì \(1-\frac{2}{x^2-1}\in Z\Leftrightarrow\frac{2}{x^2-1}\in Z\Leftrightarrow x^2-1\in\text{Ư}\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(\left(+\right)x^2-1=-2\Leftrightarrow x^2=-1\left(lo\text{ại}\right)\)

\(\left(+\right)x^2-1=-1\Leftrightarrow x^2=0\Leftrightarrow x=0\left(tm\right)\)

\(\left(+\right)x^2-1=1\Leftrightarrow x^2=2\Rightarrow x\approx1,4\left(lo\text{ại}\right)\)

\(\left(+\right)x^2-1=2\Leftrightarrow x^2=3\Leftrightarrow x\approx1,7\left(lo\text{ại}\right)\)

Vậy \(x=0\) thì biểu thức trên nguyên 

20 tháng 6 2016

\(\frac{x^2-3}{x^2-1}=\frac{x^2-1-2}{x^2-1}=\frac{x^2-1}{x^2-1}-\frac{2}{x^2-1}=1-\frac{2}{x^2-1}\)

Để \(\frac{x^2-3}{x^2-1}\)là số nguyên thì \(\frac{2}{x^2-1}\)là số nguyên

=>2 chia hết cho x2-1

=>x2-1\(\in\)Ư(2)

=>x2-1\(\in\){-2;-1;1;2}

=>x2\(\in\){-1;0;2;3}

+)Nếu x2=-1 => ko có x thỏa mãn vì x2\(\ge\)0

+)Nếu x2=0=>x=0

+)Nếu x2=2=>ko có x thỏa mãn

+)Nếu x2=3=>ko có x thỏa mãn

Vậy x=0

23 tháng 3 2018

1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)

\(36x+20-4n^2+4n\)

\(\Rightarrow36x+21=4n^2+4n+1\)

\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)

\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)chia hết cho 9

Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9

Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)

23 tháng 3 2018

2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6 

=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3 -1 13
y-6-4-20
x-1-1-331
x0-242
25 tháng 2 2018

Câu hỏi của Kamui - Toán lớp 7 | Học trực tuyến

29 tháng 3 2016

1)x+2x=0

=>x(x+2)=0

Xét x=0 hoặc x+2=0

                      x=-2

Vậy x=0 hoặc x=-2

2)x+2x-3=0

=x-1x+3x-3=0

=x(x-1)+3(x-1)=0

=(x-1)(x-3)=0

Xét x-1=0 hoặc x-3=0

     x=1            x=3

Tự KL nha

25 tháng 3 2020

A + B = (2x^2 y^2 - 4x^3 + 7xy - 18) + (x^3y + x^2y^2 - 15xy + 1)

       = 2x^2 y^2 - 4x^3 + 7xy - 18 + x^3y + x^2y^2- 15xy + 1

       = (2x^2 y2 + x^2y^2) - 4x^3 + x^3y + (7xy – 15xy) + ( -18 + 1)

       = 3x^2 y2 - 4x^3 + x^3y – 8xy – 17