Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{x^2-3}{x^2-1}=\frac{x^2-1-3}{x^2-1}-\frac{x^2-1}{x^2-1}-\frac{2}{x^2-1}=1-\frac{2}{x^2-1}\)
Để \(1-\frac{2}{x^2-1}\)là số nguyên thì \(\frac{2}{x^2-1}\)phải là số nguyên.\(\rightarrow x^2-1\inƯ\left(2\right)=\left\{-1,1,-2,2\right\}\)\(\left(x\in Z\right)\)
Ta xét các trường hợp:
TH1: \(x^2-1=-1\rightarrow x^2=0\Rightarrow x=0\)(thỏa mãn)
TH2:\(x^2-1=1\rightarrow x^2=2\Rightarrow x=\sqrt{2}\)(loại)
TH3:\(x^2-1=-2\rightarrow x^2=-1\Rightarrow\)Không có \(x\)( Vì \(x^2\ge0\)và không thể nhỏ hơn \(0\))
Th4:\(x^2-1=2\rightarrow x^2=3\Rightarrow x=\sqrt{3}\)(loại)
Vậy để \(\frac{x^2-3}{x^2-1}\in Z\)thì \(x=0\).
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
Hướng dẫn 1 phần : ko biết thì hỏi
a) áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=15\)
\(\Rightarrow\hept{\begin{cases}x=15.4=60\\y=15.5=75\end{cases}}\)
Vạy \(\hept{\begin{cases}x=60\\y=75\end{cases}}\)
Từ 2x2 + 3y2 =77.Suy ra \(0\le3y^2\le77\Rightarrow0\le y^2\le25\)kết hợp với 2x2 là số chẵn => 3y2 là số lẻ =>y2 là số lẻ => y \(\in\){1 ;9 ; 25}
+Với y2 = 1 => 2x2 = 77 - 3 = 74 <=> x2 = 37 (không thỏa mãn)
+Với y2 = 9 => 2x2 = 77 - 27 = 50 <=> x2 = 25 <=> x = 5 hoặc x = -5
+Với y2 = 25 => 2x2 = 77 - 75 = 2 <=> x2 = 1 <=> x = 1 hoặc x = -1
Vậy ta có các trường hợp sau:
x | 1 | -1 | 1 | -1 | 5 | -5 | 5 | -5 |
y | 5 | 5 | -5 | -5 | 3 | 3 | -3 | -3 |
ta có: \(2x^2+3y^2=44+33\)
=>\(2x^2+3y^2=2.22+3.11\)
=>\(x^2=22\Rightarrow\sqrt{22}\)
và \(y=11\Rightarrow\sqrt{11}\)
đúng 100%
đúng 100%
đúng 100%
\(2\left(x+1\right)^2+3y^2=21\left(1\right)\)
Ta có: 2(x+1)2+3y2=21≥3y2⇒y2≤7
Mà y2 là SCP nên \(y^2\in\left\{0;1;4\right\}\)
Với \(y^2=0\Rightarrow y=0\), thay vào (1) ta có:
\(2\left(x+1\right)^2+3.0^2=21\\ \Rightarrow2\left(x+1\right)^2=21\\ \Rightarrow\left(x+1\right)^2=\dfrac{21}{2}\left(ktm\right)\)
Với \(y^2=1\Rightarrow y=\pm1\), thay vào (1) ta có:
\(2\left(x+1\right)^2+3.\left(\pm1\right)^2=21\\ \Rightarrow2\left(x+1\right)^2+3=21\\ \Rightarrow\left(x+1\right)^2=9\\ \Rightarrow\left[{}\begin{matrix}x+1=-3\\x+1=3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Với \(y^2=4\Rightarrow y=\pm2\), thay vào (1) ta có:
\(2\left(x+1\right)^2+3.\left(\pm2\right)^2=21\\ \Rightarrow2\left(x+1\right)^2+12=21\\ \Rightarrow\left(x+1\right)^2=\dfrac{9}{2}\left(ktm\right)\)
Vậy \(\left(x,y\right)\in\left\{\left(-4;1\right);\left(-4;-1\right);\left(2;1\right);\left(2;-1\right)\right\}\)