K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

1/

a/ \(x^2+\left(y-10\right)^2=0\)

vì: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\\left(y-10\right)^4\ge0\forall y\end{matrix}\right.\)

=> Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y-10=0\Rightarrow y=10\end{matrix}\right.\)

vậy......

b/ \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\le0\)

vì: \(\left\{{}\begin{matrix}\left(0,5x-5\right)^{20}\ge0\forall x\\\left(y^2-0,25\right)^2\ge0\forall y\end{matrix}\right.\)=> \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\ge0\)

=> Dấu ''='' xảy ra khi :

\(\left\{{}\begin{matrix}0,5x-5=0\\y^2-0,25=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{0,5}=10\\y^2=0,25\Rightarrow\left[{}\begin{matrix}y=0,5\\y=-0,5\end{matrix}\right.\end{matrix}\right.\)

Vậy........

2/ Ta có: \(2011\equiv1\left(mod10\right)\)

\(2011^{201}\equiv1^{201}\equiv1\left(mod10\right)\);

Có: \(1997^3\equiv3\left(mod10\right)\)

\(\left(1997^3\right)^4\equiv3^4\equiv1\left(mod10\right)\)

\(\left(1997^{12}\right)^{14}\equiv1^{14}\equiv1\left(mod10\right)\) hay \(1997^{168}\equiv1\left(mod10\right)\)

=> \(2011^{201}-1997^{168}\equiv1-1\equiv0\left(mod10\right)\)

hay \(2011^{201}-1997^{168}\) chia hết cho 10

=> Đpcm

22 tháng 12 2017

y=1/2x 1 2 3 -4 -3

14 tháng 10 2018

\(x^2+\left(y-\dfrac{1}{10}\right)^{2018}=0\\ \Leftrightarrow x^2+\left[\left(y-\dfrac{1}{10}\right)^{1009}\right]^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^{1009}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

27 tháng 11 2017

a)

\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)

b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)

ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)

đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)

vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)

27 tháng 11 2017

c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)

ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn

\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)

d)

\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)

e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)

\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)

đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)

30 tháng 7 2017

Câu 1 :

a) \(\left(\dfrac{-1}{3}\right)^3.x=\dfrac{1}{81}\)

\(x=\left(\dfrac{-1}{3}\right)^4:\left(\dfrac{-1}{3}\right)^3\Rightarrow x=\dfrac{-1}{3}\)

b) \(\left(5.x\right)^3=-64\)

\(\left(5.x\right)^3=\left(-4\right)^3\Rightarrow5x=-4\Rightarrow x=\dfrac{-4}{5}\)

c) \(\left(2x-3\right)^2-9=0\)

\(\left(2x-3\right)^2=9=\left(\pm3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

d) \(\left(5X+1\right)^2=\dfrac{36}{49}=\left(\pm\dfrac{6}{7}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}5X+1=\dfrac{6}{7}\\5x+1=\dfrac{-6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\dfrac{-1}{35}\\\dfrac{-13}{35}\end{matrix}\right.\)

Câu 2: mik chỉ nêu đáp án thôi nhé :

a) \(x=0\)

\(y=\dfrac{1}{2}\) hoặc \(y=\dfrac{-1}{2}\)

b) x =10 còn y giống câu a

9 tháng 2 2019

1)

x(x-y) = \(\dfrac{3}{10}\)

=> \(x^2-xy=\dfrac{3}{10}\) (1)

y(x-y) = \(-\dfrac{3}{50}\)

=> \(xy-y^2=-\dfrac{3}{50}\) (2)

Trừ (1) cho (2), ta có :

\(x^2-xy-xy+y^2=\dfrac{3}{10}+\dfrac{3}{50}\)

\(\Rightarrow x^2-2xy+y^2=\dfrac{18}{50}=\dfrac{9}{25}\)

=> \(\left(x-y\right)^2=\dfrac{9}{25}\)

\(\Rightarrow\left[{}\begin{matrix}x-y=\dfrac{3}{5}\\x-y=-\dfrac{3}{5}\end{matrix}\right.\)

TH1

x- y = \(\dfrac{3}{5}\)

Ta có

\(\left\{{}\begin{matrix}x\left(x-y\right)=\dfrac{3}{10}\\y\left(x-y\right)=-\dfrac{3}{50}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{5}x=\dfrac{3}{10}\\\dfrac{3}{5}y=-\dfrac{3}{50}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{1}{10}\end{matrix}\right.\)

TH2:

x-y=\(-\dfrac{3}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x\left(x-y\right)=\dfrac{3}{10}\\y\left(x-y\right)=-\dfrac{3}{50}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{3}{5}x=\dfrac{3}{10}\\-\dfrac{3}{5}y=-\dfrac{3}{50}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{5}\end{matrix}\right.\)

Vậy các cặp (x,y) thỏa mãn là (x;y) \(\in\left\{\left(\dfrac{1}{2};-\dfrac{1}{5}\right);\left(-\dfrac{1}{2};\dfrac{1}{5}\right)\right\}\)

2) \(\left(x-3\right)\left(x+\dfrac{1}{2}\right)>0\)

TH1:

\(\left\{{}\begin{matrix}x-3>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>3\\x>-\dfrac{1}{2}\end{matrix}\right.\)

=> x >3

TH2:

\(\left\{{}\begin{matrix}x-3< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x< -\dfrac{1}{2}\end{matrix}\right.\)

=> x <\(-\dfrac{1}{2}\)

Vậy giá trị x thỏa mãn là x < -1/2 hoặc x>3

9 tháng 2 2019

1)

Từ gt,ta có : x(x - y) - y(x - y) =\(\frac{3}{10}-\frac{-3}{50}\)

(x - y)2 =\(\frac{9}{25}\)\(\Rightarrow\orbr{\begin{cases}x-y=\frac{3}{5}\\x-y=\frac{-3}{5}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{10}:\frac{3}{5}=\frac{1}{2}\\x=\frac{3}{10}:\frac{-3}{5}=\frac{-1}{2}\end{cases};\orbr{\begin{cases}y=\frac{-3}{50}:\frac{3}{5}=\frac{-1}{10}\\y=\frac{-3}{50}:\frac{-3}{5}=\frac{1}{10}\end{cases}}}}\)

Vậy\(x=\frac{1}{2};y=\frac{-1}{10}\) hoặc\(x=\frac{-1}{2};y=\frac{1}{10}\)

a: Đặt \(\sqrt{x^2+x+3}=a\)

Ta sẽ có \(\dfrac{a^2}{a}+\dfrac{1}{a}=a+\dfrac{1}{a}\ge2\cdot\sqrt{a\cdot\dfrac{1}{a}}=2\left(đpcm\right)\)

b: Đặt \(\sqrt{x^2+x+3}=b\)

Ta sẽ có \(\dfrac{b^2+4}{b}=b+\dfrac{4}{b}\ge2\cdot\sqrt{b\cdot\dfrac{4}{b}}=4\)

10 tháng 3 2020

mình chỉ biết làm 2 câu b and c thôi bạn thông cảm nha

Tìm x,y,z

b,\(\left(x+\frac{1}{2}\right)^2=\frac{81}{64}\)

\(\frac{81}{64}=\left(\frac{9}{8}\right)^2hoặc\frac{81}{64}=\left(-\frac{9}{8}\right)^2\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\frac{9}{8}\right)^2hoặc\left(x+\frac{1}{2}\right)^2=\left(-\frac{9}{8}\right)^2\)

+TH1: \(\left(x+\frac{1}{2}\right)^2=\left(\frac{9}{8}\right)^2\)

\(\Rightarrow x+\frac{1}{2}=\frac{9}{8}\)

\(x=\frac{9}{8}-\frac{1}{2}\)

\(x=\frac{9-4}{8}\)

\(x=\frac{5}{8}\)

+TH2:\(\left(x+\frac{1}{2}\right)^2=\left(-\frac{9}{8}\right)^2\)

\(\Rightarrow x+\frac{1}{2}=-\frac{9}{8}\)

\(x=-\frac{9}{8}-\frac{1}{2}\)

\(x=\frac{-9-4}{8}\)

\(x=\frac{-13}{8}\)

Vậy x= \(\frac{5}{8}\)hoặc x=\(\frac{-13}{8}\)

c, \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x^2-2y^2+z^2\)

Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(\Leftrightarrow\)\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{25}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{25}=\frac{x^2-2y^2+z^2}{4-18+25}=\frac{44}{11}=4\)

- Do đó :

\(\frac{x^2}{4}=4\Leftrightarrow\frac{x}{2}=4\Rightarrow x=4.2=8\)

\(\frac{2y^2}{18}=4\Leftrightarrow\frac{y^2}{9}=4\Rightarrow\frac{y}{3}=4\Rightarrow y=4.3=12\)

\(\frac{z^2}{25}=4\Leftrightarrow\frac{z}{5}=4\Rightarrow z=4.5=20\)

vậy x = 8 , y= 12 ,z=20

2 tháng 9 2018

a) \(\sqrt{3-x}\)=5

=>(\(\sqrt{3-x}\))2=52

=>3-x=25

=>x=-22

11 tháng 11 2018

1. Tìm x thuộc N:

\(\left(x-3\right)^6=\left(x-3\right)^7\)

\(\Leftrightarrow\left(x-3\right)^6-\left(x-3\right)^7=0\)

\(\Leftrightarrow\left(x-3\right)^6.\text{[}1-\left(x-3\right)\text{]}=0\)

\(\Leftrightarrow\left(x-3\right)^6.\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)(thỏa mãn \(x\in N\))

11 tháng 11 2018

2.

Ta có: 6x=4y=3z

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\)

\(=\dfrac{2x+3y-5z}{4+9-20}=\dfrac{-21}{-7}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.4=12\end{matrix}\right.\)