Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}\left(2x+1\right)^{2008}\ge0\forall x\\|3y-1|^{2007}\ge0\forall y\end{cases}}\)\(\Rightarrow\left(2x+1\right)^{2008}+|3y-1|^{2007}\ge0\forall x,y\)
Do đó \(\left(2x+1\right)^{2008}+|3y-1|^{2007}=0\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=0\\3y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{1}{3}\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{1}{3}\end{cases}}\)
Ta có: (x-2) (xy-1) = 5
Suy ra: x-2; xy-1 thuộc Ư(5)={-1; 1; -5; 5}
Lập bảng:
x-2 | -1 | -5 | 1 | 5 |
x | 1 | -3 | 3 | 7 |
xy-1 | -5 | -1 | 5 | 1 |
y | -4 | 0 | 2 | 2/7 |
Vậy(x;y) = (1; -4) ; (-3 ; 0) ; (3 ; 2)
\(xy=x-y+3\)
\(\Leftrightarrow xy-x+y=3\)
\(\Leftrightarrow x\left(y-1\right)+\left(y-1\right)=2\)
\(\Leftrightarrow\left(x+1\right)\left(y-1\right)=2\)
\(\Leftrightarrow x+1;y-1\inƯ\left(2\right)\)
Ta có: \(Ư\left(2\right)=\left\{\pm1;\pm2\right\}\)
Lập bảng:
x + 1 | -1 | 1 | -2 | 2 |
x | -2 | 0 | -3 | 1 |
y - 1 | -2 | 2 | -1 | 1 |
y | -1 | 3 | 0 | 2 |
KL | tm | tm | tm | tm |
Vậy các cặp số nguyên (x; y) thỏa mãn là (-2; -1); (0;3); (-3; 0) và (1; 2)
Bài 1
a, Có thể lập xy=21 <=> x=3;y=7 hoặc x=-3;y=-7
<=> x=7;y=3 hoặc x=-7;y=-3 ....v..v...
b, \(\left(x+5\right)\left(y-3\right)=15\)
\(\Rightarrow\orbr{\begin{cases}x+5=15\\y-3=15\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\y=18\end{cases}}}\)
c, \(\left(2x-1\right)\left(y-3\right)=12\)
\(\Rightarrow\orbr{\begin{cases}2x-1=12\\y-3=12\end{cases}\Rightarrow\orbr{\begin{cases}2x=13\\y=15\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{13}{2}\\y=15\end{cases}}}\)
Bài 2
Ư(6)={1;2;3;6} => 1+2+3+6=12
Ư(8)={1;2;4;8} => 1+2+4+8 =15
=> Tổng 2 ước này đều \(⋮3\)
๖²⁴ʱミ★Šїℓεŋէ❄Bʉℓℓ★彡⁀ᶦᵈᵒᶫ mù mắt =)) t làm mẫu câu b thôi, c nhìn vào mà làm
b) \(\left(x+5\right)\left(y-3\right)=15\)
\(\Rightarrow y-3=\frac{15}{x+5}\Rightarrow y=3+\frac{15}{x+5}\)
\(\Rightarrow x+5\inƯ\left(15\right)\)
Ta có: \(Ư\left(15\right)=\left\{-15;-5;-3;-1;0;1;3;5;15\right\}\)
\(x=\left\{0;-10;-8;-6;-20;-4;-2;0;10\right\}\)
Vì \(x\inℕ\Rightarrow x=\left\{0;10\right\}\)
\(\Rightarrow y=\left\{6;4\right\}\)
Vậy: (x,y) = {(0;10); (6;4)}
\(\frac{12}{16}=-\frac{x}{4}=\frac{21}{y}=\frac{z}{-80}\)
Ta có : \(\frac{12}{16}=-\frac{x}{4}\Rightarrow16.-x=12.4\Rightarrow16.-x=48\)
\(\Rightarrow-x=3\Rightarrow x=-3\)
\(\frac{12}{16}=\frac{21}{y}\Rightarrow12.y=16.21\Rightarrow12.y=336\)
\(\Rightarrow y=28\)
\(\frac{12}{16}=\frac{z}{-80}\Rightarrow16.z=12.-80\Rightarrow16.z=-960\)
\(\Rightarrow z=60\)
Vậy x = - 3 ; y = 28 ; z = 60
Ta có:
\(\frac{12}{16}=\frac{-x}{4}=\frac{21}{y}=\frac{z}{-80}\)
\(\Leftrightarrow\frac{12}{16}=\frac{-x}{4}=\frac{21}{y}=\frac{-z}{80}\) (Chuyển mẫu âm thành dương)
\(\frac{-x}{4}=\frac{12}{16}=\frac{12:\left(-4\right)}{16:\left(-6\right)}=\frac{-3}{-4}=\frac{3}{4}\Rightarrow x=-3\) (Ta chuyển mẫu âm thành dương)
\(\frac{21}{y}=\frac{3}{4}=\frac{3.7}{4.7}=\frac{21}{28}\Rightarrow y=28\)
\(\frac{-z}{80}=\frac{21}{28}\) ( Vì 80 : 28 không hết) \(\Rightarrow z=\varnothing\)
\(\Rightarrow\hept{\begin{cases}-3\\28\\\varnothing\end{cases}}\)
a, (x+2).(y-1)=4
Vì x; y thuộc N => x; y thuộc ước của 4=2.2=4.1=1.4
Ta có bảng sau:
x+2 2 4 1
y-1 2 1 4
x 0 2 -1
y 3 2 5
(t/m) (t/m) ( ko t/m)
Vậy (x;y) thuộc tập hợp: { (0;3); (2;2) }
b, Tương tự bài trên
a) (x+2)(y-1)=4
=> x+2 và y-1 \(\in\) Ư(4)={1,2,4}
Ta có bảng :
x+2 | 1 | 2 | 4 |
y-1 | 4 | 2 | 1 |
x | -1 | 0 | 2 |
y | 5 | 3 | 2 |
Vậy ta có các cặp x,y là : (x=0,y=3),(x=2,y=2)
b) (x+4)(xy-3)=3
=>x+4 và xy-3 \(\in\) Ư(3)={1,3}
Ta có bảng :
x+4 | 1 | 3 |
x | -3 | -1 |
xy-3 | 3 | 1 |
y | -3 | -4 |
Vậy không có cặp x,y nào phù hợp với điều kiện thuộc số tự nhiên
\(a,\left(x+3\right)\left(y+2\right)=1\)
=> x+3 và y+2 thuộc UC(1)={1; -1}
x+3 | 1 | -1 |
x | -2 | -4 |
y+2 | 1 | -1 |
y | -1 | -3 |
Vậy x=-2; y=-4
x=-1; y=-4
Câu sau tương tự
\(a,\left(x+3\right)\left(y+2\right)=1\)
Th1 : \(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
KL : \(\left\{\left(x=-2;y=-1\right);\left(x=-4;y=-3\right)\right\}\)
\(d,3x+4y-xy=16\)
\(=3x-xy+4y-12=4\)
\(\Rightarrow-x\left(y-3\right)+4\left(y-3\right)=4\)
\(\Rightarrow\left(y-3\right)\left(4-x\right)=4\)
Chia các trường hợp như câu a của chị ra em nhé
Bài toán :
Kết quả: Vẽ đồ thị hàm số
Kết quả: Vẽ đồ thị hàm số