Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|x-3\right|^{2014}\ge0;\left|6+2y\right|^{2015}\ge0\)
\(\Rightarrow\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\ge0\)
Mà đề lại cho : \(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\le0\Rightarrow\left|x-3\right|^{2014}=0;\left|6+2y\right|^{2015}=0\)
\(\Rightarrow x-3=0;6+2y=0\Rightarrow x=3;y=-3\)
Ta có:\(\hept{\begin{cases}\left|x-3\right|\ge0\\\left|6+2y\right|\ge0\end{cases}\Rightarrow\hept{\begin{cases}\left|x-3\right|^{2014}\ge0\\\left|6+2y\right|^{2015}\ge0\end{cases}\Rightarrow}\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\ge0}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-3\right|^{2014}=0\\\left|6-2y\right|^{2015}=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}}\)
Vì |x - 3|2014 ≥ 0 ; |6 + 2y|2015 ≥ 0
=> |x - 3|2014 + |6 + 2y|2015 ≥ 0
Mà để |x - 3|2014 + |6 + 2y|2015 ≤ 0 <=> |x - 3|2014 = 0 ; |6 + 2y|2015 = 0
=> x = 3 và y = - 3
Vậy x = 3 và y = - 3
\(\left|x-3\right|^{2014}\ge0;\left|6+2y\right|^{2015}\ge0\Rightarrow\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\ge0\)
theo đề:\(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\le0\)
\(\Rightarrow\left|x-3\right|^{2014}=\left|6+2y\right|^{2015}=0\Rightarrow x=3;2y=-6=>y=-3\)
vậy...
|x - 3|2014 \(\ge\)0; |6 + 2y|2015 \(\ge\)0
Mà : \(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\le0\)
Thì chỉ có dấu "=", xảy ra khi và chỉ khi:
x - 3 = 0; 6 + 2y = 0
<=> x = 3; y = -3.
<=> x= 3 ; y = -3
Vậy x = 3 ; y = -3
Chúc bn học tốt nhé !
ð |x+1|3=(y+2013)2014(=0)
Ta có: |x+1|3 = |x+1|*|x+1|*|x+1|=0
ð |x+1|=0
ð x+1=0
ð x=0-1
ð x=-1
Ta có: (y+2013)2014=(y+2013)*…*(y+2013)=0
ð y+2013=0
ð y=0-2013
ð y=-2013
Vậy x=-1 và y=-2013
Lời giải:
Ta thấy:
$|x+1|^3\geq 0$ với mọi $x$
$(y+2015)^{2014}\geq 0$ với mọi $y$
Do đó để tổng $|x+1|^3+(y+2015)^{2014}=0$ thì:
$|x+1|=y+2015=0$
$\Rightarrow x=-1; y=-2015$