Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phân số đó là \(\frac{a}{b}\left(a;b\in N;a;b\ne0\right)\)
a) Ta có :
\(a+b=ab\)
\(\Rightarrow a+b-ab=0\)
\(a\left(1-b\right)+b=0\)
\(b-1-a\left(b-1\right)=0-1\)
\(\left(1-a\right)\left(b-1\right)=-1\)
\(\Rightarrow1-a;b-1\inƯ\left(-1\right)=\left\{-1;1\right\}\)
Ta có bảng :
1-a a b-1 b 1 1 -1 -1 0 0 2 2 Mà \(b\ne0\Rightarrow\frac{a}{b}=\frac{2}{2}\) không phải là phân số tối giản.
Dó không viết được phân số thỏa mãn.
b) Ta có :
\(a-b=ab\)
\(\Rightarrow a-b-ab=0\)
\(a\left(1-b\right)-b+1=0+1\)
\(\left(a+1\right)\left(1-b\right)=1\)
\(\Rightarrow a+1;1-b\inƯ\left(1\right)=\left\{-1;1\right\}\)
Ta có bảng sau :
a b 1 -1 0 0 2 a+1 1-b 1 -1 -2 ( loại )
Ta chỉ còn trường hợp a = b = 0; và không thỏa mãn.
Vậy không viết được phân số thỏa mãn.
Gọi phân số đó là \(\frac{a}{b}\) ( a ; b \(\in N\)a ; b \(\ne\)0)
a) Ta có :
\(a+b=ab\)
\(\Rightarrow a+b-ab=0\)
\(a\left(1-b\right)+b=0\)
\(b-1-a\left(b-1\right)=0-1\)
\(\left(1-a\right)\left(b-1\right)=-1\)
\(\Rightarrow1-a;b\inƯ\left(-1\right)=\left\{-1;1\right\}\)
Ta có bảng
1 - a | 1 | -1 |
a | 0 | 2 |
b - 1 | -1 | 1 |
b | 0 | 2 |
b \(\ne\)0 => \(\frac{a}{b}=\frac{2}{2}\) không phải là phân số tối giản
Do đó không viết được phân số thỏa mãn
b tương tự
\(\text{Bài giải}\)
\(\text{Gọi phân số tối giản có tử và mẫu là số tự nhiên đó là : }\frac{a}{b}\) \(\left(a,b\ne0\right)\)
\(a,\text{ Ta có : }\)
\(a+b=ab\)
\(\Leftrightarrow\text{ }a+b-ab=0\)
\(a\left(1-b\right)+b=0\)
\(b-1-a\left(b-1\right)=0\)
\(\left(1-a\right)\left(b-1\right)=-1\)
\(\text{ }\Rightarrow\text{ }1-a,b\text{ }\inƯ\left(-1\right)=\left\{\pm1\right\}\)
\(\text{Ta có bảng : }\)
\(1-a\) | \(1\) | \(-1\) |
\(a\) | \(0\) | \(2\) |
\(b-1\) | \(-1\) | \(1\) |
\(b\) | \(0\) | \(2\) |
\(b\ne0\)\(\Rightarrow\text{ }\frac{a}{b}=\frac{2}{2}\text{ không phải là phân số tối giản}\)
\(\text{Do đó không tìm được phân số thỏa mãn}\)
\(b,\text{ Ta có : }\)
\(a-b=a\cdot b\)
\(\approx\text{Làm tương tự }\)
1,
Gọi 3 số cần tìm là \(x,y,z\left(x,y,z\in Z;x,y,z>0\right)\)
Ta có : \(xyz=2\left(a+b+c\right)\)
Giả sử :\(x\ge y\ge z\Leftrightarrow xyz\le2.3x\)
\(xy\le6\) mà\(x,y\in Z\)
\(\Leftrightarrow xy\in\left\{1;2;3;4;5;6\right\}\)
Giải các trường hợp, ta được (x,y,z) là (1,3,8) ; (1,4,5) ; (2,2,4) và các hoán vị
1:1=1*1
Ta có x.y=x+y=x-y
=>x.y-x+y-x+y=0
=(x-x-x)+(y-y-y)=0
=>3x.3y=0
3(x+y)=0
x+y=0:3
x+y=0
=>x=0 và y=0
Chúc bn học tốt