Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:(3x-y)\(^2\)\(\ge\) 0 \(\forall\) x
|x+y|\(\ge\) 0 \(\forall\)i x,y
=>(3x-y)\(^2\)+|x+y|\(\ge\)0 \(\forall\) x,y
=>(3x-y)\(^2\)+|x+y|-3\(\ge\)-3 \(\forall\)x,y
Vậy GTNN của biểu thức B là -3
Dấu "=" xảy ra khi (3x-y)\(^2\)=|x+y|=0
Với (3x-y)\(^2\)=0=>3x-y=0=>3x=y=>x=y=0
Với |x+y|=0=>x+y=0=>x=x=0
Vậy biểu thức B đạt GTNN là -3 khi x=y=0
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow f\left(x-1\right)=a\left(x-1\right)^2+b\left(x-1\right)+c\)
\(\Rightarrow f\left(x\right)-f\left(x-1\right)=ax^2+bx+c-ax^2+2ax-a-bx+b-c=x\)
\(\Leftrightarrow2ax-a+b-x=0\)
\(\Leftrightarrow\left(2a-1\right)x+b-a=0\)
\(\Leftrightarrow\hept{\begin{cases}2a-1=0\\b-a=0\end{cases}\Leftrightarrow}a=b=\frac{1}{2}\)
\(\)và Hàm số đúng với mọi giá trị của \(c\)
Vậy \(a=b=\frac{1}{2};c\in R\)
a) \(\left(x+1\right)^{x+1}=\left(x+1\right)^{x+5}\)
\(\Leftrightarrow\left(x+1\right)^{x+5}-\left(x+1\right)^{x+1}=0\)(Chuyển vế đổi dấu)
\(\Leftrightarrow\left(x+1\right)^{x+1}\left(\left(x+1\right)^4+1\right)=0\)(Đặt ra ngoài)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^{x+1}=0\\\left(x+1\right)^4+1=0\end{cases}}\)(Dấu\(\orbr{\begin{cases}\\\end{cases}}\)là dấu "hoặc" nha bạn)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^4=-1\left(vl\right)\end{cases}}\)(vl là vô lí) (Do (x+1)4 >= 0)
\(\Leftrightarrow x=-1\)
Vậy x= -1
b) \(10^x:5^y=20^x\)
\(5^y=10^x:20^x\)
\(5^y=\left(\frac{1}{2}\right)^x\)
Để ý 5 khác 1/2 nên chỉ có x = y = 0 thỏa mãn
Vậy x = y = 0
Do x,y thuoc z nen ta co bang gia tri sau:
x-2 23 1 -23 -1
y+1 1 23 -1 -23
x 25 3 -21 1
y 0 22 -2 -24
y 0 23