\(\left(x-y-5\right)^2+\left|2x-3y\right|=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

\(\left(x-y-5\right)^2+\left|2x-3y\right|=0\)

\(\left\{{}\begin{matrix}\left(x-y-5\right)^2\ge0\forall x;y\\\left|2x-3y\right|\ge0\forall x;y\end{matrix}\right.\)

\(\Rightarrow\left(x-y-5\right)^2+\left|2x-3y\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-y-5\right)^2=0\\\left|2x-3y\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-y-5=0\\2x-3y=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=5\\2x-3y=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x-2y=10\Rightarrow2x=10+2y\\2x-3y=0\Rightarrow2x=3y\end{matrix}\right.\)

\(\Rightarrow10+2y=3y\Rightarrow y=10\)

\(\Rightarrow x-10=5\Rightarrow x=10+5=15\)

26 tháng 7 2017

Mình k chép lại đề nha!

=> x-y-5=0 => x-y=5

Và 2x-3y=0 => 2x=3y => \(\dfrac{x}{3}=\dfrac{y}{2}\)

Ap dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x-y}{3-2}=\dfrac{5}{1}=5\)

Suy ra x/3=5=>x=15

y/2=5=>y=10

Vậy x=15 ; y=10

13 tháng 3 2020

có |2x-5| luôn \(\ge0\forall x\in Q\)

cũng có \(\left|3y+1\right|\ge0\forall y\in Q\)

=> \(\left|2x-5\right|+\left|3y-1\right|\ge0\forall x;y\in Q\)

=>\(\hept{\begin{cases}2x-5=0\\3y-1=0\end{cases}}\)<=> \(\hept{\begin{cases}2x=5\\3y=1\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{3}\end{cases}}\) 

vậy \(x=\frac{2}{5};y=\frac{1}{3}\)

em nhớ là phải dùng ngoặc nhọn như trên nhé! Nếu không sẽ sai đấy!

3 câu còn lại cũng tương tự

13 tháng 3 2020

giúp mik câu cuối với các bạn

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\left|3y+1\right|\ge0\forall y\)

Do đó: \(\left|2x-5\right|+\left|3y+1\right|\ge0\forall x,y\)

\(\left|2x-5\right|+\left|3y+1\right|=0\)

nên \(\left\{{}\begin{matrix}\left|2x-5\right|=0\\\left|3y+1\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{-1}{3}\end{matrix}\right.\)

Vậy: \(x=\frac{5}{2}\)\(y=\frac{-1}{3}\)

b) Ta có: \(\left|3x-4\right|\ge0\forall x\)

\(\left|3y-5\right|\ge0\forall y\)

Do đó: \(\left|3x-4\right|+\left|3y-5\right|\ge0\forall x,y\)

\(\left|3x-4\right|+\left|3y-5\right|=0\)

nên \(\left\{{}\begin{matrix}\left|3x-4\right|=0\\\left|3y-5\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-4=0\\3y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{3}\\y=\frac{5}{3}\end{matrix}\right.\)

Vậy: \(x=\frac{4}{3}\)\(y=\frac{5}{3}\)

c) Ta có: |16-|x||≥0∀x

\(\left|5y-2\right|\ge0\forall y\)

Do đó: |16-|x||+|5y-2|≥0∀x,y

mà |16-|x||+|5y-2|=0

nên \(\left\{{}\begin{matrix}\text{|16-|x||}=0\\\left|5y-2\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}16-\left|x\right|=0\\5y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|=16\\5y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{16;-16\right\}\\y=\frac{2}{5}\end{matrix}\right.\)

Vậy: \(x\in\left\{16;-16\right\}\)\(y=\frac{2}{5}\)

26 tháng 7 2017

Ta có \(\left(x-y-5\right)^2\ge0;\left|2x-3y\right|\Rightarrow0\) 

\(\Rightarrow x-y-5=0và2x-3y=0\) 

\(\Rightarrow x-y=5\)và \(2x=3y\) 

\(\Rightarrow x-y=5\) và\(\frac{x}{3}=\frac{y}{2}\) 

Áp dụng t/c dãy tỉ số = nhau

\(\frac{x}{3}=\frac{y}{2}=\frac{x-y}{3-2}=\frac{5}{1}=5\)

Tự làm phần còn lại

26 tháng 7 2017

Ta có

Vì \(\left(x-y-5\right)^2\)và \(|2x-3y|\)luôn luôn lớn hơn hoặc bằng 0

\(\Rightarrow\orbr{\begin{cases}x-y-5=0\\2x-3y=0\end{cases}\Rightarrow\orbr{\begin{cases}x-y=5\\2x=3y\end{cases}}\Rightarrow\orbr{\begin{cases}x-y=5\\x=\frac{3}{2}y\end{cases}}}\)

Thay  \(\frac{3}{2}y\) 

\(\Rightarrow\orbr{\begin{cases}\left(\frac{3}{2}y-y-5\right)^2=0\\3x-3y=0\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{2}y-5=0\left(x^2=0\Rightarrow x=0\right)\\x=y\end{cases}}\)

Nếu x = y thì \(\left(x-y-5\right)^2\ne0\Rightarrow\left(x-y-5\right)^2+|2x-3y|\ne0\Rightarrow\)x , y không tồn tại

23 tháng 4 2017

A=2(x+y)+3xy(x+y)+5x2y2(x+y)+2

A=2.0+3xy.0+5x2y2.0+2

A=2

B=xy(x+y)+2x2y (x+y)+5

B=xy.0+2x2y.0+5=5

12 tháng 5 2020

a,Ta có 2(x+y)+3xy(x+y)+5x2y2(x+y)+4

Xg thay x+y=0 vào là dc bn nhó

Chúc bn hok tốt

24 tháng 9 2023

2023 =))

21 tháng 11 2017

a) Ta có: \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|\ge0\)

\(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|=0\)

\(\Rightarrow\left[{}\begin{matrix}\left|1-2x\right|=0\\\left|2-3y\right|=0\\\left|3-4z\right|=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}1-2x=0\\2-3y=0\\3-4z=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=1\\3y=2\\4z=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{3}\\z=\dfrac{3}{4}\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{2};y=\dfrac{2}{3};z=\dfrac{3}{4}\)

21 tháng 11 2017

Cảm ơn bn nhiều

19 tháng 9 2018

Vì mũ chẵn và GTTĐ luôn lớn hơn hoặc bằng 0

mà ... ( ghi đề bài ra )

\(\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\\\frac{4}{3}x+\frac{5}{2}y=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}\)

Vậy,.......