K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

\(\frac{4x-3}{3}=\frac{3y+1}{7}=\frac{4x+3y-2}{5y}\)

\(=\frac{4x-3+3y+1-\left(4x+3y-2\right)}{3+7-5y}\)

\(=\frac{4x-3+3y+1-4x-3y+2}{10-5y}\)

\(=\frac{\left(4x-4x\right)+3y-3y-3+1+2}{10-5y}=0\)

\(\Rightarrow\hept{\begin{cases}4x-3=0\Leftrightarrow x=\frac{3}{4}\\3y+1=0\Leftrightarrow y=-\frac{1}{3}\end{cases}}\)

Vậy \(x=\frac{3}{4};y=-\frac{1}{3}\).

17 tháng 9 2017

Câu trả lời đúng là :

x = 3/4

y = -1/3

Đáp số : ...

15 tháng 12 2021

1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)

2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)

3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)

Áp dụng t/c dtsbn:

\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)

6 tháng 3 2021

 đặt \(\dfrac{x}{3}\) = \(\dfrac{y}{7}\) = k => x=3k,y=7k

ta có x*y=84  

=> 3k*7k=84

=>21k2 =84

k2 =4 =>k =+2 hoặc -2

xét k = 2                                          xét k = -2

x=3*2=6                                          x=3*(-2)=-6

y=7*2=14                                       y=7*(-2)=-14

vậy x \(\in\) (6 hoặc -6)

vậy y \(\in\) (14 hoặc -14)

NV
20 tháng 1 2024

Áp dụng t/c dãy tỉ số bằng nhau:

a.

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)

(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)

b.

\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)

c.

\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)

d.

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)

25 tháng 6 2018

\(\hept{\begin{cases}3x=2y\\2x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{3}{2}.x\\2x+\frac{3}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{3}{2}.x\\\frac{7}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{6}{7}\\y=\frac{9}{7}\end{cases}}}\)

\(\hept{\begin{cases}\frac{x}{3}=\frac{3y}{4}\\3x-y=4\end{cases}\Leftrightarrow\hept{\begin{cases}4x=9y\\3x-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9y}{4}\\\frac{3.9}{4}y-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\\frac{23}{4}.y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\y=\frac{16}{23}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{36}{23}\\y=\frac{16}{23}\end{cases}}}\)

Các phần sau làm tương tự nhé

8 tháng 11 2015

4x=3y=>x/3=y/4=>x/9=y/12 (1)

5y=3z=>y/3=z/5=>y/12=z/20 (2)

từ 1 và 2 ta có :

x/9=y/12=z/20

=>2x/18=3y/36

áp ...ta có :

2x/18=3y/36=2x-3y/18-36=6/-18=-1/3

=>x/9=-1/3=>x=-3

=>y/12=-1/3=>y=-4

=>z/20=-1/3=>z=-20/3

 

8 tháng 11 2015

\(\Rightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y}{2.9-3.12}=\frac{6}{-18}=-\frac{1}{3}\)

x =-1/3 . 9 = -3

y= -1/3  .12 = -4

z = -1/3  .20 = -20/3

8 tháng 3 2016

ai k mk người đó giỏi nhất thế giới!

5 tháng 7 2015

\(4x=3y;5y=3z\Rightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

suy ra :

\(\frac{x}{9}=3\Rightarrow x=27\)

\(\frac{y}{12}=3\Rightarrow y=36\)

\(\frac{z}{20}=3\Rightarrow z=60\)

5 tháng 7 2015

4x = 3y      => x/3 = y/4                 (1)

5y = 3z      => y/3 = z/5                  (2)

từ (1), (2)      => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) và 2x - 3y + z = 6

áp dụng tính chất của dãy tỉ số bằng nhau, có:

 \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{9\cdot2-3\cdot12+20}=\frac{6}{2}=3\)

suy ra: \(\frac{x}{9}=3\Rightarrow x=9\cdot3=27\)

\(\frac{y}{12}=3\Rightarrow y=12\cdot3=36\)

\(\frac{z}{20}=3\Rightarrow z=20\cdot3=60\)

9 tháng 8 2023

a) \(3^{x+2}\cdot5^{y-3}=45^x\)

\(\Rightarrow3^{x+2}\cdot5^{y-3}=\left(3^2\right)^x\cdot5^x\)

\(\Rightarrow3^{x+2}\cdot5^{y-3}=3^{2x}\cdot5^x\)

\(\Rightarrow\left\{{}\begin{matrix}3^{x+2}=3^{2x}\\5^{y-3}=5^x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+2=2x\\y-3=x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y-3=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)