K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
22 tháng 6 2023

Vì : \(\left(2x-5\right)^{2022}\ge0\forall x,\left(3y+4\right)^{2024}\ge0\forall y\\ =>\left(2x-5\right)^{2022}+\left(3y+4\right)^{2024}\ge0\)

Do đó đề bài xảy ra khi và chỉ khi :

\(\left\{{}\begin{matrix}\left(2x-5\right)^{2022}=0\\\left(3y+4\right)^{2024}=0\end{matrix}\right.\\ =>\left(x;y\right)=\left(\dfrac{5}{2};-\dfrac{4}{3}\right)\)

22 tháng 6 2023

Mình ko biết cách để làm ra đc kết quả này, có thể giải thích cụ thể hơn ko ạ?

14 tháng 9 2020

Vì \(\left(2x-5\right)^{2020}\ge0\forall x\)\(\left(5y+1\right)^{2022}\ge0\forall y\)

\(\Rightarrow\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\ge0\forall x,y\)

mà \(\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\le0\)( giả thuyết )

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=5\\5y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-1}{5}\end{cases}}\)

Vậy \(x=\frac{5}{2}\)và \(y=\frac{-1}{5}\)

14 tháng 9 2020

( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0

Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x

            ( 5y + 1 )2022 ≥ 0 ∀ y

=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y

Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0

Khi đó \(\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{1}{5}\end{cases}}\)

28 tháng 9 2020

GIÚP MIK VS MIK SẼ TiCK CHO BẠN ĐÚNG

28 tháng 9 2020

Câu hỏi của ꧁♥ღ๖ۣۜ Jinny - kun ๖ۣۜღ♥꧂ - Toán lớp 7 | Học trực tuyến

8 tháng 7 2015

Do (2x-5)2000>0

(3y+4)2002>0

Mà (2x-5)2000+(3y+4)2002<0

=>(2x-5)2000=0 (3y+4)2002=0

<=>x=2,5 y=4/3

18 tháng 5 2016

ta thấy \(\begin{cases}\left(2x-5\right)^{2000}\\\left(3y+4\right)^{2002}\end{cases}\ge0}\)  

Theo bài ra ta có (2x-5)2000+(3y+4)2002\(\le\) 0

=> (2x-5)2000+(3y+4)2002=0

=>2x-5=0 => x=2,5

=>3y+4=0=>y=\(\frac{-4}{3}\)

    

18 tháng 5 2016

Vì (2x-5)2000 > 0 với mọi x

(3y+4)2002 > 0 với mọi y

=>(2x-5)2000+(3y+4)2002 > 0 ới mọi x;y

Mà (2x-5)2000+(3y+4)2002 < 0 (theo đề)

=>(2x-5)2000+(3y+4)2002=0

=>(2x-5)2000=(3y+4)2002=0

+)(2x-5)2000=0=>2x-5=0=>x=5/2

+)(3y+4)2002=0=>3y+4=0=>y=-4/3

Vậy x=5/2;y=-4/3

3 tháng 9 2018

a) (2x-3)15 = (2x-3)7

=> (2x-3)15 - (2x-3)7 = 0

(2x-3)7.[(2x-3)8 -1] = 0

=> (2x-3)7 = 0 => 2x-3 = 0 => 2x = 3 => x = 3/2

(2x-3)8 - 1 = 0 => (2x-3)8 = 1 => 2x - 3 = 1 => 2x = 4 => x = 2

                                              => 2x - 3 = - 1 => 2x = 2 => x = 1

KL:...

3 tháng 9 2018

b) ta có: \(\left(x-3\right)^{16}\ge0;\left(3y-5\right)^4\ge0.\)

Để (x-3)16 + (3y-5)4 = 0

=> (x-3)16 = 0 => x-3 = 0 => x = 3

(3y-5)4 = 0 => 3y - 5 = 0 => 3y = 5 => y = 5/3

KL:...

15 tháng 6 2018

\(2)\) Ta có : 

\(n^{200}< 3^{400}\)

\(\Leftrightarrow\)\(n^{200}< 3^{2.200}\)

\(\Leftrightarrow\)\(n^{200}< \left(3^2\right)^{200}\)

\(\Leftrightarrow\)\(n^{200}< 9^{200}\)

\(n\) lớn nhất nên \(n=8\)

Vậy \(n=8\)

Chúc bạn học tốt ~ 

15 tháng 6 2018

1) (2x-5)2008+(3y+4)2010<=0

=>2x-5=0 và 3y+4=0

=>x=5/2 và y=-4/3

2)n200<3400

=>n200<9200

=>n<9

Vậy số nguyên n lớn nhất là 8

bn tham khao nha

https://olm.vn/hoi-dap/detail/6372485534.html

13 tháng 8 2019

Ta có: \(\left(2x-5\right)^2\ge0\forall x\) ;  \(\left(3y+4\right)^{2014}\ge0\forall y\)

\(\Rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\forall x;y\)

Để thỏa mạn đề bài :

\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2012}=0\\\left(3y+4\right)^{2014}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}}\)

Vậy............