Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(2x-5\right)^{2020}\ge0\forall x\); \(\left(5y+1\right)^{2022}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\ge0\forall x,y\)
mà \(\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\le0\)( giả thuyết )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=5\\5y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-1}{5}\end{cases}}\)
Vậy \(x=\frac{5}{2}\)và \(y=\frac{-1}{5}\)
( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0
Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x
( 5y + 1 )2022 ≥ 0 ∀ y
=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y
Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0
Khi đó \(\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{1}{5}\end{cases}}\)
ta thấy \(\begin{cases}\left(2x-5\right)^{2000}\\\left(3y+4\right)^{2002}\end{cases}\ge0}\)
Theo bài ra ta có (2x-5)2000+(3y+4)2002\(\le\) 0
=> (2x-5)2000+(3y+4)2002=0
=>2x-5=0 => x=2,5
=>3y+4=0=>y=\(\frac{-4}{3}\)
Vì (2x-5)2000 > 0 với mọi x
(3y+4)2002 > 0 với mọi y
=>(2x-5)2000+(3y+4)2002 > 0 ới mọi x;y
Mà (2x-5)2000+(3y+4)2002 < 0 (theo đề)
=>(2x-5)2000+(3y+4)2002=0
=>(2x-5)2000=(3y+4)2002=0
+)(2x-5)2000=0=>2x-5=0=>x=5/2
+)(3y+4)2002=0=>3y+4=0=>y=-4/3
Vậy x=5/2;y=-4/3
a) (2x-3)15 = (2x-3)7
=> (2x-3)15 - (2x-3)7 = 0
(2x-3)7.[(2x-3)8 -1] = 0
=> (2x-3)7 = 0 => 2x-3 = 0 => 2x = 3 => x = 3/2
(2x-3)8 - 1 = 0 => (2x-3)8 = 1 => 2x - 3 = 1 => 2x = 4 => x = 2
=> 2x - 3 = - 1 => 2x = 2 => x = 1
KL:...
b) ta có: \(\left(x-3\right)^{16}\ge0;\left(3y-5\right)^4\ge0.\)
Để (x-3)16 + (3y-5)4 = 0
=> (x-3)16 = 0 => x-3 = 0 => x = 3
(3y-5)4 = 0 => 3y - 5 = 0 => 3y = 5 => y = 5/3
KL:...
\(2)\) Ta có :
\(n^{200}< 3^{400}\)
\(\Leftrightarrow\)\(n^{200}< 3^{2.200}\)
\(\Leftrightarrow\)\(n^{200}< \left(3^2\right)^{200}\)
\(\Leftrightarrow\)\(n^{200}< 9^{200}\)
Mà \(n\) lớn nhất nên \(n=8\)
Vậy \(n=8\)
Chúc bạn học tốt ~
bn tham khao nha
https://olm.vn/hoi-dap/detail/6372485534.html
Ta có: \(\left(2x-5\right)^2\ge0\forall x\) ; \(\left(3y+4\right)^{2014}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\forall x;y\)
Để thỏa mạn đề bài :
\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2012}=0\\\left(3y+4\right)^{2014}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}}\)
Vậy............
Vì : \(\left(2x-5\right)^{2022}\ge0\forall x,\left(3y+4\right)^{2024}\ge0\forall y\\ =>\left(2x-5\right)^{2022}+\left(3y+4\right)^{2024}\ge0\)
Do đó đề bài xảy ra khi và chỉ khi :
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2022}=0\\\left(3y+4\right)^{2024}=0\end{matrix}\right.\\ =>\left(x;y\right)=\left(\dfrac{5}{2};-\dfrac{4}{3}\right)\)
Mình ko biết cách để làm ra đc kết quả này, có thể giải thích cụ thể hơn ko ạ?