Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t = 2x^2 +x pt trở thành
t^2 - 4t + 3=0
=>t^2 -t -3t +3 =0
=>t( t - 1) -3( t - 1)=0
=>(t - 3)(t - 1 )=0
*)Với t-3=0 <=> 2x^2 + x -3=0
=>2x^2 +3x -2x - 3 =0
=>x(2x + 3) - (2x + 3)=0
=>(x - 1)(2x + 3)=0 <=>x=1 hoặc x=-3/2
*)Với t-1=0 <=> 2x^2 + x -1=0
=>2x^2 - x + 2x -1=0
=>x(2x - 1) + (2x - 1) =0
=>(x + 1)(2x - 1)=0 <=> x=-1 hoặc x=1/2
Tìm x
a) ( x - 1 )^3 + 1 + 3x( x - 4 ) = 0
b) x^3 - 6x^2 + 9x = 0
giúp mình với mình cần gấp
mình cảm ơn
b) \(x^3-6x^2+9x=0\)
\(\Leftrightarrow x.\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow x.\left(x-3\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy \(x=0\)hoặc \(x=3\)
a. ( x - 1 )3 + 1 + 3x ( x - 4 ) = 0
<=> x3 - 3x2 + 3x - 1 + 1 + 3x2 - 12x = 0
<=> x3 - 9x = 0
<=> x ( x2 - 9 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)
b. x3 - 6x2 + 9x = 0
<=> x ( x2 - 6x + 9 ) = 0
<=> x ( x - 3 )2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x-3\right)^2=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
- Ta có: \(\frac{x+4}{x-2}=\frac{-3}{4}\)
\(\Rightarrow4.\left(x+4\right)=-3.\left(x-2\right)\)
\(\Leftrightarrow4x+16=-3x+6\)
\(\Leftrightarrow4x+3x=6-16\)
\(\Leftrightarrow7x=-10\)
\(\Leftrightarrow x=-\frac{10}{7}\)
Vậy \(S=\left\{-\frac{10}{7}\right\}\)
ok cám ơn bạn.