K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

Bài 1:

\(x^3-x^2-x+1=0\)

\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy x = 1 hoặc x = -1

Bài 2:
\(2x-2x^2-1=-2\left(x^2-x+\dfrac{1}{2}\right)\)

\(=-2\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=-2\left(x^2-\dfrac{1}{2}\right)^2-\dfrac{1}{2}< 0\)

\(\Rightarrowđpcm\)

22 tháng 10 2017

đpcm la j the ban

28 tháng 6 2017

a) x2 - 7x + 16
= (x2 - 2x\(\frac{7}{2}\)\(\frac{49}{4}\)) + \(\frac{15}{4}\)
= (x - \(\frac{7}{2}\))2 + \(\frac{15}{4}\)> 0
b) 3x2 - 3x + 1
= [\(\left(\sqrt{3x^2}\right)^2\)- 2.\(\sqrt{3x^2}\).\(\frac{\sqrt{3}}{2}\)\(\frac{3}{4}\)] + \(\frac{1}{4}\)
= (\(\sqrt{3x^2}\)\(\frac{\sqrt{3}}{2}\))2 + \(\frac{1}{4}\)> 0
c) -x2 + 3x - 5
= -(x2 - 3x + 5)
= -(x2 - 2x\(\frac{3}{2}\)\(\frac{9}{4}\)+\(\frac{11}{4}\))
= -[(x - \(\frac{3}{2}\))2 + \(\frac{11}{4}\)] < 0
d) Câu này sai đề rồi bạn ơi

14 tháng 12 2019

\(4x^2-20x+25-4x^2-x+8x+2=0\)

\(-13x+27=0\)

\(x=\frac{27}{13}\)

20 tháng 7 2018

\(\left(5-2x\right)^2-16=0\)

\(\Leftrightarrow\left(5-2x\right)^2-4^2=0\)

\(\Rightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5-2x-4=0\\5-2x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}-2x=4-5\\-2x=-4-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}-2x=-1\\-2x=-9\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{-2}=\frac{1}{2}\\x=\frac{-9}{-2}=\frac{9}{2}\end{cases}}\)

Vậy ................................

20 tháng 7 2018

= 5^2 - 2.5.2x + (2x)\(^2\)- 16 = 0

=> x = 4,5

8 tháng 10 2017

a) ta có : \(\left(1-2x\right)\left(x-1\right)-5=x-1-2x^2+2x-5\)

\(=-2x^2+3x-6=-\left(2x^2-3x+6\right)=-\left(\left(\sqrt{2}x\right)^2-2.\sqrt{2}.\dfrac{3}{2\sqrt{2}}x+\left(\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{39}{8}\right)\)

\(=-\left(\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{39}{8}\right)=-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\)

ta có : \(\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2\le0\) với mọi \(x\)

\(-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\le\dfrac{-39}{8}< 0\) với mọi \(x\)

vậy \(\left(1-2x\right)\left(x-1\right)-5< 0\) (đpcm)

b) ta có : \(-x^2-y^2+2x+2y-3\)

\(=\left(-x^2+2x-1\right)+\left(-y^2+2y-1\right)-1\)

\(=-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-1=-\left(x-1\right)^2-\left(y-1\right)^2-1\)

ta có : \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge\forall x\\\left(y-1\right)^2\ge\forall y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\left(x-1\right)^2\le0\forall x\\-\left(y-1\right)^2\le0\forall y\end{matrix}\right.\)

\(\Rightarrow-\left(x-1\right)^2-\left(y-1\right)^2\le0\) với mọi \(x;y\)

\(\Leftrightarrow-\left(x-1\right)^2-\left(y-1\right)^2-1\le-1< 0\) với mọi \(x;y\)

vậy \(-x^2-y^2+2x+2y-3< 0\) (đpcm)

8 tháng 10 2017

\(a,A=\left(1-2x\right)\left(x-1\right)-5\)

\(=x-1-2x^2+2x-5\)

\(=-2x^2+3x-6\)

\(=-\left(2x^2-3x+\dfrac{9}{8}\right)-\dfrac{39}{8}\)

\(=-\left[\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\dfrac{3}{2\sqrt{2}}+\left(\dfrac{3}{2\sqrt{2}}\right)^2\right]-\dfrac{39}{8}\)

\(=-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\)

Ta có :

\(-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2\le0\) \(\Rightarrow-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\le-\dfrac{39}{8}\)

Hay A \(\le-\dfrac{39}{8}\)

Dấu = xảy ra \(\Leftrightarrow\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2=0\)

\(\Leftrightarrow\sqrt{2}x-\dfrac{3}{2\sqrt{2}}=0\) \(\Leftrightarrow\sqrt{2}x=\dfrac{3}{2\sqrt{2}}\Leftrightarrow x=\dfrac{3}{2\sqrt{2}}:\sqrt{2}\)

\(\Leftrightarrow x=\dfrac{3}{4}\)

Vậy \(Min_A=-\dfrac{39}{8}\Leftrightarrow x=\dfrac{3}{4}\)