K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

Bài này đến lớp 8 còn làm đc (bọn chuyên). 

Không khó đau, mình hd nhé:

Bạn thấy có 2x^2 và 9y^2 không

2x^2 không là bình phương của gì cả và không ghép được với các số sau nên tách ra.

Giải như bình thường.

\(x^2+x^2+\left(3y\right)^2-6xy-6x-12y+2010\)

\(\left(x-3y\right)^2-4x-12y+x^2-2x+2010\)

\(\left(x-3y\right)^2-4\left(x-3y\right)+4+x^2-2x+1+2005\)

\(\left(x-3y+2\right)^2+\left(x-1\right)^2+2005\ge2005\)

5 tháng 5 2016

A=(x-3y+2)^2+(x-5)^2+....

xong r đó

16 tháng 1 2017

\(A=2x^2+9y^2-6xy-6x-12y+2036\)

   \(=x^2-10x+25+x^2-6xy+9y^2+4x-12y+4+2007\)

   \(=\left(x-5\right)^2+\left(x-3y\right)^2+4\left(x-3y\right)+4+2007\)

   \(=\left(x-5\right)^2+\left(x-3y+2\right)^2+2007\)

 \(\Rightarrow A\ge2007\)

Dấu "=" xảy ra khi \(x=5,y=\frac{7}{3}\)

12 tháng 6 2015

A = (x2 - 6xy + 9y2) + 2.(x - 3y).2  + 4 + x2 - 10x + 25 + 1993

A = [(x - 3y)2 + 2.(x - 3y).2 + 22 ] + (x - 5)2 + 1993

A = (x - 3y + 2)2 + (x - 5)2 + 1993 \(\ge\) 0 + 0 + 1993

=> Min A = 1993 khi x - 3y + 2 = 0 và x - 5 = 0

=> x = 5 và y = 7/3 

19 tháng 5 2017

1/ Với mấy bài dạng này, u cứ tách theo kiểu coi x (hoặc y) là biến, cái còn lại là tham số.

\(A=2x^2+9y^2-6xy-6x-12y+2037\)

\(2A=4x^2-12x\left(y+1\right)+18y^2-24y+4074\)

\(2A=\left(2x\right)^2-2.2x.3\left(y+1\right)+9\left(y+1\right)^2+9y^2-42y+4065\)

\(2A=\left[2x-3\left(y+1\right)\right]^2+\left(3y-7\right)^2+4016\ge4016\)       nên    \(A\ge2008\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}2x-3\left(y+1\right)=0\\3y-7=0\end{cases}}\)   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)

7 tháng 6 2017

Nguyễn Thành Phát

P = x² + xy + y² - 3x - 3y + 2010 ⇒ 4P = 4(x² + xy + y² - 3x - 3y + 2010) 

= 4x² + 4xy + 4y² - 12x - 12y + 8040 = 4x² + 4xy + y² + 3y² - 12x - 6y - 6y + 3 + 9 + 8028 

= (4x² + 4xy + y²) - (12x + 6y) + 9 + (3y² - 6y + 3) + 8028 

= [ (2x + y)² - 6(2x + y) + 9 ] + 3(y² - 2y + 1) + 8028 

= (2x + y - 3)² + 3(y - 1)² + 8028. Do (2x + y - 3)² ≥ 0 và 3(y - 1)² ≥ 0 

⇒ (2x + y - 3)² + 3(y - 1)² + 8028 ≥ 8028 ⇒ 4P ≥ 8028 ⇒ P ≥ 2007. 

Dấu '=' xảy ra ⇔ 3(y - 1)² = 0 và (2x + y - 3)² = 0 

⇔ y - 1 = 0 và 2x + y - 3 = 0 

⇔ y = 1 và x = (3 - y)/2 = (3 - 1)/2 = 1

Vậy với x = y = 1 thì GTNN của P là 2007.

7 tháng 6 2017

-2x chứ đâu phải -3x đâu bạn

10 tháng 1 2016

bạn nhóm thành các bình phương nhé. còn dư 4xy với 1.

10 tháng 1 2016

bạn trình bày cho mình đc ko?

19 tháng 5 2020

Ta có \(\left(2x+y+1\right)^2\ge0;\left(4x+my+5\right)^2\ge0\Rightarrow G\ge0\)

Xét hệ \(\hept{\begin{cases}2x+y+1=0\\4x+my+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y+2=0\\4x+my+5=0\end{cases}\Rightarrow}\left(m-2\right)y+3=0}\)

Nếu \(m\ne2\)thì \(m-2\ne0\Rightarrow\hept{\begin{cases}y=\frac{3}{2-m}\\x=\frac{m-5}{4-2m}\end{cases}}\)

\(\Rightarrow Min_G=0\)

Nếu  m=2 thì

\(G=\left(2x+y+1\right)^2+\left(4x+my+5\right)^2=\left(2x+y+1\right)^2+\left[2\cdot\left(2x+y+1\right)+3\right]^2\)

Đặt 2x+y+1=z thì 

\(G=5z^2+12z+9=5\left[\left(z+\frac{6}{5}\right)^2+\frac{9}{25}\right]=5\left(x+\frac{6}{5}\right)+\frac{9}{5}\ge\frac{9}{5}\)

\(Min_G=\frac{9}{5}\Leftrightarrow2x+y+1=\frac{-6}{5}\)hay \(y=\frac{-11}{5}-2x,x\inℝ\)

22 tháng 2 2019

\(P=\frac{2x^2-2xy+9y^2}{x^2+2xy+5y^2}=1+\frac{\left(x-2y\right)^2}{x^2+2xy+5y^2}=\frac{17}{4}-\frac{1}{3}.\frac{\left(3x+7y\right)^2}{x^2+2xy+5y^2}\)

\(\Rightarrow\hept{\begin{cases}min_P=1\\max_P=\frac{17}{4}\end{cases}}\)

28 tháng 8 2021

 làm sao để ra max được v

 

15 tháng 7 2019

Đặt \(\hept{\begin{cases}2x=a\left(a>0\right)\\3y=b\left(b>0\right)\end{cases}}\)

\(\Rightarrow2x+3y=a+b\le2,x.y=\frac{ab}{6}\)

\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{9}{\frac{ab}{6}}=\frac{4}{a^2+b^2}\ne\frac{54}{ab}\)

Vì \(a>0,b>0\)

Nên áp dụng BĐT cô-si ta có:\(a+b\ge2\sqrt{ab}\)

Mà \(a+b\le2\Rightarrow2\sqrt{ab}\le2\Rightarrow\sqrt{ab}\le1\Rightarrow ab\le1\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x > 0 , y > 0 

\(\Rightarrow\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge1\)

\(\Rightarrow\frac{4}{a^2+b^2}+\frac{4}{2ab}\ge4\)

\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{4}{2ab}+\frac{52}{ab}\)

\(P\ge4+52=56\)

\(\Rightarrow MinP=56\Leftrightarrow\hept{\begin{cases}a=b\\a+b=2\\a.b=1\end{cases}}\Leftrightarrow\hept{a=b=1\Leftrightarrow2x=3y=1\Leftrightarrow x=\frac{1}{2},y=\frac{1}{3}}\)

a: Khi m=-5 thì y=2(-5+1)x-(-5)+4

=>y=-8x+9

PTHĐGĐ là:

x^2+8x-9=0

=>(x+9)(x-1)=0

=>x=1 hoặc x=-9

=>y=1 hoặc y=81

b: \(A=\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(2m+2\right)^2-4\left(m-4\right)}\)

\(=\sqrt{4m^2+8m+4-4m+16}\)

\(=\sqrt{4m^2+4m+20}\)

\(=\sqrt{\left(2m+1\right)^2+19}>=\sqrt{19}\)

Dấu = xảy ra khi m=-1/2