K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

ta thấy: \(\left|x-2010\right|\ge0\)\(\left(y+2011\right)^{2020}\ge0\)

\(\Rightarrow\left|x-2010\right|+\left(y+2011\right)^{2020}+2011\ge2011\)

dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2010=0\\y+2011=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)

vậy MinA=2011 khi\(\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)

6 tháng 11 2016

dễ ợt 2008

1 tháng 4 2018

giải đi chứ

8 tháng 8 2019

\(Q=\left|x-2010\right|+\left(y+2011\right)^{2010}+2011\)

Ta có:\(\hept{\begin{cases}\left|x-2010\right|\ge0\\\left(y+2011\right)^{2010}\ge0\end{cases}}\)

Nên \(\left|x-2010\right|+\left(y+2011\right)^{2010}+2011\ge2011\)

Vậy \(Q_{min}=2011\Leftrightarrow\hept{\begin{cases}x-2010=0\\y+2011=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2010\\y=-2011\end{cases}}\)

18 tháng 12 2022

A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011

≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011

= |y-2010|+|x-2011|+2012≥2012

Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0

<=> {y=2010x=2011{y=2010x=2011

Vay GTNN cua A=2012 khi {x=2011;y=2010

29 tháng 3 2019

Vì |x-2010|\(\ge\)0

(y+2011) 2010\(\ge\)0

=>|x-2010|+(y+2011) 2010\(\ge\)0

=>A=|x-2010| + (y+2011) 2010 +2011 \(\ge\)0+2011

Dấu "=" xảy ra khi |x-2010|=(y+2011)2010=0

<=>x=2010 và y=-2011

Vậy Amin=2011 khi x=2010 và y=-2011

AH
Akai Haruma
Giáo viên
29 tháng 3 2019

Lời giải:

Ta thấy:

\(|x-2010|\geq 0, \forall x\in\mathbb{R}\)

\((y+2011)^{2010}=[(y+2010)^{1005}]^2\geq 0, \forall y\in\mathbb{R}\)

\(\Rightarrow A=|x-2010|+(y+2011)^{2010}+2011\geq 0+0+2011=2011\)

Vậy GTNN của $A$ là $2011$.

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-2010=0\\ y+2011=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2010\\ y=-2011\end{matrix}\right.\)

21 tháng 2 2018

A=/x-2008/+/2009-x/+/y-2010/+/x-2011/+2011

≥/x-2008+2009-x/+/y-2010/+/x-2011/+2011

= /y-2010/+/x-2011/+2012≥2012

Dau bang xay ra khi : \(\left\{{}\begin{matrix}y-2010=0\\x-2011=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}y=2010\\x=2011\end{matrix}\right.\)

Vay GTNN cua A=2012 khi \(\left\{{}\begin{matrix}x=2011\\y=2010\end{matrix}\right.\)

1 tháng 1 2018

Tên của mày là Tôm

1 tháng 1 2018

bài này cũng khó đấy!

23 tháng 12 2017

ta có \(B=\left|x-2010\right|+\left|2012-x\right|+\left|x-2011\right|\)

Áp dụng bđt chưa dấu giá trị tuyệt đó ts có

\(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=2\)

mà \(\left|x-2011\right|\ge0\)

Cộng hết vào => B\(\ge2\)

dấu = xảy ra <=> x=2011