Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 8.(x-2013)2+y2=25
=>y2=25-8.(x-2013)2
Vì \(\left(x-2013\right)^2\ge0=>8.\left(x-2013\right)^2\ge0=>25-8.\left(x-2013\right)^2\le25-0\)
=>\(y^2\le25=>y\le5\)
=>\(y\in\left\{1,2,3,4,5\right\}=>y^2\in\left\{1,4,9,16,25\right\}\)
Vì 25:8 dư 1, 8.(x-2013)2 chia 8 dư 0
=>25-8.(x-2013)2 chia 8 dư 1
=>y2 chia 8 dư 1
mà \(y^2\in\left\{1,4,9,16,25\right\}\)
=>y2=25=>y=5
25-8.(x-2013)2=25
=>8.(x-2013)2=0
=>(x-2013)2=0
=>x-2013=0
=>x=2013
Vậy x=2013, y=5
Dễ thấy rằng: 8(x-100)^2 chia hết cho 8
=> y^2 chia 8 dư 1
=> y E {1;3;5} (vì y^2 =< 25)
+) y=1 khi đó: 24=8(x-100)^2
=> 3=(x-100)^2 (3 không là số chính phương) (loại)
+) y=3 khí đó: 25-y^2=16=>(x-100)^2=2
2 không là số chính phương (loại)
+) y=5=> (x-100)^2=0
=> x=100 (thỏa mãn)
Vậy: y=5;x=100
(12-y^2)/3 = (x-2013)^2
4-(y^2)/3 = (x-2013)^2
VP>=0 => VT>=0 => (y^2)/3 <= 4 => y^2<=12
VP là 1 số nguyên => y^2 chia hết cho 3 mà y thuộc N => y=3 hoặc y=0
Xét y=3 => x = 2014
Xét y=0 => x=2015
Vậy: (x;y) { (2014; 3); (2015;0)}
Chúc bạn học tốt
Ta có:
\(25-y^2=8\left(x-100\right)^2\)
Do VP là số chẵn nên VT là số chẵn
Suy ra y2là số lẻ nhỏ hơn hoặc bằng 25
\(\Rightarrow y^2\in\left\{25,16,9,4,1\right\}\)
\(\Rightarrow y\in\left\{5,4,3,2,1\right\}\)
Với y=5=>8(x-100)2=0
=>x=100
Với x=4=>8(x-100)2=9
=>không tồn tại số tự nhiên x
....(như bài mẫu trên)...
Vậy.......
Vì (x-100)2 \(\ge\) 0 => 8 (x-100 ) 2 \(\ge\) 0
=> 25 - y2 \(\ge\) 0
=> y2 \(\le\) 25 mà y là số chính phương => y \(\in\) {1;2;3;4;5}
Mà 25 - y2 \(⋮\) 8 => y \(\in\) {1;3;5}
TH1 y=1
8(x-100 ) 2 = 24
(x-100)2 = 3 (loại )
TH2 y=3
8(x-100) 2 = 16
(x-100 ) 2 = 2 (loại )
TH3 y=5
8(x-100)2 = 0
(x-100 ) 2 = 0
(x-100 ) 2 = 02
=> x-100 = 0
=> x=100
Vậy \(\hept{\begin{cases}y=5\\x=100\end{cases}}\)
Câu hỏi của ʚĭɞ Thị Quyên ʚĭɞ - Toán lớp 7 | Học trực tuyến
Ta có : \(8\left(x-2013\right)^2\)= 25 - \(y^2\)
\(8\left(x-2013\right)^2\) >0 và chẵn
=> 25 - \(y^2\)\(\ge0\) => \(y^2\)\(\le25\) và y lẻ
=> \(y^2\)\(\in\left\{1,9,25\right\}\)
TH1 : \(y^2\)= 1 => \(8\left(x-2013\right)^2\)= 24
\(\left(x-2013\right)^2\)= 3 ( ko xảy ra)