Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{3}{5}.x=\frac{2}{3}.y=k\) => \(x=\frac{5}{3}.k;y=\frac{3}{2}.k\)
=> \(x^2-y^2=\left(\frac{5k}{3}\right)^2-\left(\frac{3k}{2}\right)^2=\frac{25}{9}k^2-\frac{9}{4}k^2=\left(\frac{25}{9}-\frac{9}{4}\right)k^2=\frac{19}{36}k^2\)
=> \(\frac{19}{36}k^2=38\)=> k2 = 72 => k = \(6\sqrt{2}\) hoặc - \(6\sqrt{2}\)
k = \(6\sqrt{2}\) => x = \(10\sqrt{2}\); y = \(9\sqrt{2}\)
k = - \(6\sqrt{2}\) => x = - \(10\sqrt{2}\); y = - \(9\sqrt{2}\)
Vậy,,,
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2=\left(\frac{z}{5}\right)^2\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Theo t/c dãy tỉ số = nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y+z}{2-3+5}=\frac{4}{4}=1\)
=> x=2; y=3; z=5
=> xyz = 235
x2 - 2xy + y2 = 0
x2 - xy - xy + y2 = 0
x(x - y) - y(x - y) = 0
(x - y)(x - y) = 0
(x - y)2 = 0
x - y = 0
=> x = y
Vậy x = y thì x2 - 2xy + y2 = 0