Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Mình chỉnh sửa lại đầu bài của bạn nha. Không biết có đúng không. Nếu để đầu bài như bạn thì mình không làm ra được. Mog góp ý !!!!
Áp dụng t/c DTSBN ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)
\(=\dfrac{x+y+x}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+x}{2x+2y+2z}=\dfrac{1}{2}\)
=>\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\left(1\right)\)
=>\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\left(2\right)\)
=>\(\dfrac{z}{x+y-2}=\dfrac{1}{2}\left(3\right)\)
=> x+y+z = 1/2 (4)
Ta có : Từ (1) => 2x = y+z+1 kết hợp (4)
=> 2x = 1/2-x+1
=> 3x = 3/2 => x=1/2
Ta có: Từ (2) => 2y = x+z+1
=> 2y + y = x+y+z+1
=> 3y = 1/2+1 (theo 4) => 3y=3/2
=> y=1/2
Ta có : Từ (4) => x+y+z=1/2
=>1/2 + 1/2 +z = 1/2
=> z=-1/2
Vậy ( x;y;z)=(1/2;1/2;-1/2)
Đặt \(A=\frac{4X-4}{X-2}\)(ĐKXĐ:\(x\ne2\))
Ta có:\(A=\frac{4X-4}{X-2}=\frac{4\left(x-2\right)+4}{x-2}=4+\frac{4}{x-2}\)
Để A nguyên thì 4 chia hết cho x-2. Hay \(\left(x-2\right)\inƯ\left(4\right)\)
Vậy Ư(4) là:[1,-1,2,-2,4,-4]
Do đó ta có bảng sau:
x-2 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -2 | 0 | 1 | 3 | 4 | 6 |
Vậy để A nguyên thì x=-2;0;1;3;4;6
a)\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{12}\Leftrightarrow\dfrac{-x}{-8}=\dfrac{y}{5}=\dfrac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{-x}{-8}=\dfrac{y}{5}=\dfrac{z}{12}=\dfrac{-x+y+z}{-8+5+12}=\dfrac{60}{9}=\dfrac{20}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{20}{3}.8=\dfrac{160}{3}\\y=\dfrac{20}{3}.5=\dfrac{100}{3}\\z=\dfrac{20}{3}.12=80\end{matrix}\right.\)
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Leftrightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-20}{-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.2=10\\y=5.3=15\\z=5.4=20\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}4x=3y\\7y=5z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{28}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{x-y+z}{15-20+28}=\dfrac{-46}{23}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2.15=-30\\y=-2.20=-40\\z=-2.28=-56\end{matrix}\right.\)
Áp dụng t/c của dãy tỉ số = nhau có:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot2=4\\y=2\cdot4=8\\z=2\cdot6=12\end{matrix}\right.\)
\(B=\frac{4x-5}{4x+3}\)
\(=\frac{4x+3-8}{4x+3}\)
\(=1-\frac{8}{4x+3}\)
Để B đạt gtnn thì \(1-\frac{8}{4x+3}\)đạt gtnn.
\(\Rightarrow\frac{8}{4x+3}\)đạt gtln \(\Rightarrow4x+3\)đạt gtnn
Mà \(4x+3\in Z\)và 4x+3>0
\(\Rightarrow4x+3=1\)
\(\Rightarrow x=\frac{-1}{2}\)
Vậy \(x=\frac{-1}{2}\)thì B đạt gtnn là -7 (thay \(x=\frac{-1}{2}\)vào B)
Câu 2:
\(\dfrac{x+2000}{x-2000}=\dfrac{y+2001}{y-2001}\)
\(\Leftrightarrow\left(x+2000\right)\left(y-2001\right)=\left(x-2000\right)\left(y+2001\right)\)
\(\Leftrightarrow xy-2001x+2000y-4002000=xy+2001x-2000y-4002000\)
=>-2001x+2000y=2001x-2000y
=>-4002x=-4000y
=>2001x=2000y
hay x/y=2000/2001
Giải:
Đặt \(T=\dfrac{4x-4}{x-2}\).
Ta có:
\(T=\dfrac{4x-4}{x-2}=4\left(\dfrac{x-1}{x-2}\right)=4\left(\dfrac{x-2+1}{x-2}\right)=4\left(\dfrac{x-2}{x-2}+\dfrac{1}{x-2}\right)=4\left(1+\dfrac{1}{x-2}\right)=4+\dfrac{4}{x-2}\)
Để \(T\in Z\) thì \(\dfrac{4}{x-2}\in Z\Rightarrow4⋮\left(x-2\right)\) hay \(\left(x-2\right)\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng sau:
Vậy, với \(x\in\left\{-2;0;1;3;6\right\}\) thì \(T=\dfrac{4x-4}{x-2}\in Z\).
Để \(\dfrac{4x-4}{x-2}\in Z\)
\(\Rightarrow x-2=1\)
\(\Rightarrow x=3\)
Thay x = 3 vào biểu thức, ta có:
\(\dfrac{4.3-4}{3-2}=8\in Z\)
Vậy x = 3