Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne1\end{cases}}\)
\(A=\frac{2x+1}{x^2-3x+2}+\frac{x+1}{1-x}-\frac{x^2+5}{x^2-3x+2}+\frac{x^2+x}{x-1}\)
\(\Leftrightarrow A=\frac{2x+1}{\left(x-1\right)\left(x-2\right)}-\frac{x+1}{x-1}-\frac{x^2+5}{\left(x-2\right)\left(x-1\right)}+\frac{x^2+x}{x-1}\)
\(\Leftrightarrow A=\frac{2x+1-\left(x+1\right)\left(x-2\right)-x^2-5+\left(x^2+x\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{2x+1-x^2+x+2-x^2-5+x^3-x^2-2x}{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}\)
b) Khi \(x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=.0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}\)
\(\Leftrightarrow A=\frac{\left(-1\right)^3-3\left(-1\right)^2-1-2}{\left(-1-2\right)\left(-1-1\right)}=\frac{\left(-1\right)-3-1-2}{\left(-3\right)\left(-2\right)}=\frac{7}{6}\)
c) Để A = 0
\(\Leftrightarrow\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x^3-3x^2+x-2=0\)2.89328919
Phần này mik k biết phân tích như thế nào, tính ra :
\(\Leftrightarrow x\approx2,89328919\)
Nhưng nếu đề bắt tìm nghiệm nguyên của x thì \(S=\varnothing\)nhé !
d) Để \(A\inℤ\)
\(\Leftrightarrow x^3-3x^2+x-2⋮\left(x-2\right)\left(x-1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x^3-3x^2+x-2⋮x-2\\x^3-3x+x-2⋮x-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2-x-1\right)\left(x-2\right)-4⋮x-2\\\left(x^2-2x-1\right)\left(x-1\right)-3⋮x-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4⋮x-2\\3⋮x-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{1;3;0;4;-2;6\right\}\\x\in\left\{0;2;-2;4\right\}\end{cases}}\)
\(\Leftrightarrow x\in\left\{0;-2;4\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{0;-2;4\right\}\)
XIN LỖI CẬU,TỚ MỚI HỌC LỚP 5 À
NHƯNG CÁC BẠN TICK MÌNH NHA,VÌ CHẮC CHẮN BẠN ĐÓ SẼ KHÔNG TICK MÌNH VÌ MÌNH KHÔNG TRẢ LỜI CÂU HỎI CỦA BẠN ĐÓ
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
a: A nguyên
=>3x+1 chia hết cho 2-x
=>3x-6+7 chia hết cho x-2
=>x-2 thuộc {1;-1;7;-7}
=>x thuộc {3;1;9;-5}
b: B nguyên
=>8x-4+6 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;2;-2;3;-3;6;-6}
=>x thuộc {1;0;2;-1}
c: C nguyên
=>x-1 chia hết cho 2x+1
=>2x-2 chia hết cho 2x+1
=>2x+1-3 chia hết cho 2x+1
=>2x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-1;1;-2}
2x-1 là ước của 3x+2
<=>3x+2 là bội của 2x-1
=>2(3x+2) là bội của 2x-1
=>6x+4 là bội của 2x-1
=>6x-3+7 chia hết cho 2x-1
=>3(2x-1)+7 chia hết cho 2x-1
Mà 3(2x-1) chia hết cho 2x-1
=>7 chia hết cho 2x-1
=>2x-1 thuộc Ư(7)
=>2x-1 thuộc {-7;-1;1;7}
=>2x thuộc {-6;0;2;8}
=>x thuộc {-3;0;1;4}
Ai có cách khác thì giúp mình nha.
Cach 1 : 2x-1 là ước của 3x+2
<=>3x+2 là bội của 2x-1
=>2(3x+2) là bội của 2x-1
=>6x+4 là bội của 2x-1
=>6x-3+7 chia hết cho 2x-1
=>3(2x-1)+7 chia hết cho 2x-1
Mà 3(2x-1) chia hết cho 2x-1
=>7 chia hết cho 2x-1
=>2x-1 thuộc Ư(7)
=>2x-1 thuộc {-7;-1;1;7}
=>2x thuộc {-6;0;2;8}
=>x thuộc {-3;0;1;4}
Cách 2 : Mình chịu
Thấy đúng thì k nhé!!!