Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a/ \(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 nên a(a+1)(a+2) chia hết cho 6. Ta có đpcm
b/ Đề sai , giả sử với a = 3
c/ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\)
d/ \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
e/ \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\)
2/ a/ \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
BT đạt giá trị nhỏ nhất bằng 2 tại x = 3
b/ \(-x^2+6x-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
BT đạt giá trị lớn nhất bằng -2 tại x = 3
Nãy ấn nhầm thông cảm
1) a) đkxđ \(x\ne\pm3,x\ne1\)
Ta có : \(P=\left(\frac{2x}{x+3}+\frac{x}{x-3}-\frac{3x^2+3}{x^2-9}\right):\left(\frac{2x-2}{x-3}-1\right)\)
\(=\left(\frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^2+3}{\left(x+3\right)\left(x-3\right)}\right):\frac{2x-2-x+3}{x-3}\)
\(=\frac{2x^2-6x+x^2+3x-3x^2-3}{\left(x+3\right)\left(x-3\right)}:\frac{x+1}{x-3}\)
\(=\frac{-3x-3}{\left(x+3\right)\left(x-3\right)}.\frac{x-3}{x+1}=\frac{-3\left(x+1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)}=\frac{-3}{x+3}\)
b) Để \(P\in Z\) thì \(\frac{-3}{x+3}\in Z\Leftrightarrow x+3\inƯ\left(-3\right)=\left\{\pm1,\pm3\right\}\)
Ta có bảng giá trị
x+3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 |
-6 |
Vậy với \(x\in\left\{-2,-4,0,6\right\}\) thì \(P\in Z\)
c) \(\left|x+3\right|=5\Leftrightarrow\left[{}\begin{matrix}x+3=5\\x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
Thay x=2 vào P, ta có : \(P=-\frac{3}{2+2}=-\frac{3}{4}\)
Thay x=-8 vào P, ta có : \(P=-\frac{3}{-8+2}=\frac{1}{2}\)
Vậy ....
2) a) đkxđ : \(x\ne1\)
Ta có : \(R=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)
\(=1:\left(\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\)
\(=1:\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=1:\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=1:\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2+x+1}{x}\)
Xét : \(P-3=\frac{x^2+x+1}{x}-3=\frac{x^2-2x+1}{x}=\frac{\left(x-1\right)^2}{x}\)
+)Nếu \(x\ge0,x\ne1\Rightarrow R>3\)
+) Nếu \(x< 0\Rightarrow R< 3\)
+) Nếu \(\left[{}\begin{matrix}x=\frac{5+\sqrt{21}}{2}\\x=\frac{5-\sqrt{21}}{2}\end{matrix}\right.\) \(\Rightarrow R=3\)
c) Để \(R>4\Rightarrow\frac{x^2+x+1}{x}>4\) \(\Rightarrow x^2+x+1>4x\)
\(\Rightarrow x^2>3x-1\) \(\Rightarrow x>\frac{3x-1}{x}=3-\frac{1}{x}\)
Vậy \(x>3-\frac{1}{x}thìR>4\)
d) Thay x=1/4 vào R, ta có : \(R=\frac{\frac{1}{16}+\frac{1}{4}+1}{\frac{1}{4}}=\frac{21}{4}\)
đề bài mk cảm thấy nó sao sao í bạn ạ hoặc do mk tính sai
a^2(a+1)+2a(a+1)
=(a+1)(a^2+2a)
=a(a+1)(a+2)
đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.
a(2a-3)-2a(a+1)
= 2a^2 - 3a - 2a^2 - 2a
= - 5a chia hết cho 5
x^2 + 2x + 2
=(x+1)^2 +1
(x+1)^2 là số dương; 1 là số dương nên "cái kết quả trên" lớn hơn 0
-x^2 + 4x - 5
= - (x^2 - 4x + 5)
= - (x - 2)^2 + 1
vậy kết quả trên bé hơn 0
bài này mà gọi là bài lớp 8 hả còn dễ hơn bài lớp 6 em là hs lớp 6
=a, (x-3)(x+3)-(x-7)(x+7)= x2 - 9 - x2 + 7
= -2
b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)= (4x-5)2 - 2(4x+5)(3x-2) + (3x-2)2
= ( 4x - 5 - 3x + 2 )2
= ( x - 3 )2
c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2= 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2
= (3x-y)2+ 2(3x-y)(3x+y)+ (3x+y)2
= ( 3x - y + 3x + y )2
= ( 6x )2
= 36x2
d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)
1, rút gọn
a, (x-3)(x+3)-(x-7)(x+7)
= x^2 - 9 - (x^2 - 49)
= x^2 - 9 - x^2 + 49
= 40
b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)
= 16x^2 - 40x + 25 + 9x^2 - 12x + 4 - 2(12x^2 - 8x + 15x - 10)
= 25x^2 - 52x + 29 - 24x^2 + 16x - 30x + 20
= x^2 - 66x + 49
c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2
= 2(9x^2 - y^2) + 9x^2 - 6xy + y^2 + 9x^2 + 6xy + y^2
= 18x^2 - 2y^2 + 18x^2 + 2y^2
= 36x^2
d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)
= dài vl