Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x-13}{x+3}\inℤ\Leftrightarrow x-13⋮x+3\)
\(\Rightarrow x+3-16⋮x+3\)
\(x+3⋮x+3\)
\(\Rightarrow16⋮x+3\)
tự làm tiếp!
b, \(A=\frac{x-13}{x+3}=\frac{x+3-16}{x+3}=\frac{x-3}{x-3}-\frac{16}{x+3}=1-\frac{16}{x+3}\)
để A đạt giá trị nhỏ nhất thì \(\frac{16}{x+3}\) lớn nhất
=> x+3 là số nguyên dương nhỏ nhất
=> x+3=1
=> x = -2
vậy x = -2 và \(A_{min}=1-\frac{16}{1}=-15\)
a, \(A=\frac{10x+13}{2x+4}\inℤ\Leftrightarrow10x+13⋮2x+4\)
\(\Rightarrow10x+20-7⋮2x+4\)
\(\Rightarrow5\cdot2x+5\cdot4-7⋮2x+4\)
\(\Rightarrow5\left(2x+4\right)-7⋮2x-4\)
\(5\left(2x+4\right)⋮2x+4\)
\(\Rightarrow7⋮2x-4\)
tới đây bn liệt kê Ư(7) rồi làm tiếp.
b, \(A=\frac{10x+13}{2x+4}=\frac{10x+20-7}{2x+4}=\frac{5\left(2x+4\right)}{2x+4}-\frac{7}{2x+4}=5-\frac{7}{2x+4}\)
để A đạt giá trị nhỏ nhất thì \(\frac{7}{2x+4}\) lớn nhất
=> 2x+4 là số nguyên dương nhỏ nhất
+ xét 2x+4 = 1
=> 2x = -3
=> x = -1,5 loại vì x thuộc Z
+ xét 2x+4=2
=> 2x = -2
=> x = -1 (tm)
vậy x = 1 và \(A_{min}=5-\frac{7}{2}=\frac{3}{2}\)
Ta có B=\(\left|x-2\right|+\left|x-4\right|+\left|x-3\right|=\left|x-2\right|+\left|4-x\right|+\left|x-3\right|\ge\left|x-2+4-x\right|+\left|x-3\right|=2+\left|x-3\right|\ge2\)
Dấu = xảy ra <=> x=3
c) Ta có C=\(\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|=4\)
Dấu = xảy ra <=> \(2\le x\le3\)
^_^
b) Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge x-2\\\left|x-3\right|\ge0\\\left|x-4\right|=\left|4-x\right|\ge4-x\end{cases}}\)
\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge\left(x-2\right)+\left(4-x\right)\)
\(\Rightarrow B\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2\ge0\\x-3=0\\4-x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)
Vậy, MinP \(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)
A=(x-1)2+2008
\(\text{vì }\left(x-1\right)^2\ge0\) nên A đạt GTNN là 2008
<=> x-1=0
=> x=0+1
=> x=1
a)A=( x - 1 )2 + 2008
ta thấy:(x-1)2\(\ge\)0
=>(x-1)2+2008\(\ge\)0+2008
=>A\(\ge\)2008
vậy Amin=2008 khi x=1
b)B = | x + 4 | + 1996
=>|x+4|\(\ge\)0
=>|x+4|+1996\(\ge\)0+1996
=>B\(\ge\)1996
c)để C đạt GTNN=>5 chia hết x-2
=>x-2\(\in\){1,-1,5,-5}
=>x\(\in\){3,2,-3,7}
mà C đạt GTNN =>x=-3
d)để D đạt GTNN=>x+5 chia hết x-4
<=>(x-4)+9 chia hết x-4
=>9 chia hết x-4
=>x-4\(\in\){1,-1,3,-3,-9,9}
=>x\(\in\){5,3,7,1,13,-5}
mà D đạt GTNN
=>x=1
mà D đạt GTNN =>x=-3
Để \(\frac{17}{x-2016}\)đạt giá trị lớn nhất thì \(x-2016\)là số nguyên dương nhỏ nhất \(\Rightarrow x-2016=1\)
\(\Rightarrow x=2017\)
a) không
b) nhỏ nhất \(\orbr{\begin{cases}x-5=160\Rightarrow x=165\\x-5=-160\Rightarrow x=-155\end{cases}}\)
c) Lớn nhất \(\orbr{\begin{cases}x-5=169\Rightarrow x=174\\x-5=-169\Rightarrow x=-164\end{cases}}\)
\(A=\dfrac{x-3}{x-5}\)
\(A=\dfrac{x-5}{x-5}+\dfrac{2}{x-5}\)
\(A=1+\dfrac{2}{x-5}\)
Để A đạt GTNN thì \(x-5\) đạt giá trị âm lớn nhất.
Do đó: \(x-5=-1\Rightarrow x=4\)
Vậy \(x=4\) thì A đạt GTNN.