Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-5}{x-10}=\frac{x-10+5}{x-10}=1+\frac{5}{x-1}\\ \)
Để \(\frac{x-5}{x-10}>0th\text{ì}1+\frac{5}{x-1}>0\\ \Rightarrow\frac{5}{x-10}>-1\Rightarrow\begin{cases}x-10>0\\x-10< -5\end{cases}\Rightarrow\begin{cases}x>10\\x< 5\end{cases}\)
Vậy x>10 hoặc x<5
a) Để \(A=\frac{x-5}{x}\)là số nguyên
=> x - 5 ⋮ x mà x ⋮ x => 5 ⋮ x
=> x ∈ { -5 ; -1 ; 1 ; 5 }
b) Với các giá trị x tìm được ở trên , để A là số dương thì :
x - 5 và x cùng dấu
+) Nếu x - 5 và x cùng dấu dương
=> x - 5 > 0 => x > 5 ( loại )
+) Nếu x - 5 và x cùng dấu ấm
=> x < 0 => x ∈ { -5 ; -1 }
Khi đó A ∈ { 2 ; 6 }
c) Với các giá trị x tìm được ở phần a
Để \(A=\frac{x-5}{x}\)là số nguyên âm thì ;
x - 5 và x trái dấu
Mà x - 5 < x ∀ x
=> x - 5 < 0 và x > 0
Do đó x = 1 => A = -4
a) A = \(\frac{3x+1}{x-1}\)
A là phân số <=> x - 1 \(\ne\)0 <=> x \(\ne\)1
b) A là số nguyên âm
TH1: x - 1 > 0 => x > 1 => 3x + 1 > 0
=> A là số nguyên dương => loại
TH2: x - 1 < 0 => x < 1 mà x nguyên dương nên
x = 0 => 3x + 1 = 1 > 0 => A < 0 => Thỏa mãn
Vậy x = 0 thỏa mãn
c) A nhận giá trị nguyên dương lớn nhất
Ta có: \(A=\frac{3x+1}{x-1}=\frac{3x-3+4}{x-1}=3+\frac{4}{x-1}\)
A nguyên dương lớn nhất <=> \(\frac{4}{x-1}\) nguyên dương lớn nhất
<=> \(x-1>0;x-1\inƯ\left(4\right);x-1\)bé nhất
=> x - 1 = 1
=> x = 2 thỏa mãn
khi đó A = 7 thỏa mãn
Vậy x = 2 thì A lớn nhất bằng 7
a) \(x\)là số hữu tỉ khi \(a-17\ne0\Leftrightarrow a\ne17\).
b) \(x\)là số hữu tỉ dương khi \(\frac{13}{a-17}>0\Leftrightarrow a-17>0\Leftrightarrow a>17\).
c) \(x\)là số hữu tỉ âm khi \(\frac{13}{a-17}< 0\Leftrightarrow a-17< 0\Leftrightarrow a< 17\).
d) \(x=-1\Rightarrow\frac{13}{a-17}=-1\Rightarrow13=17-a\Leftrightarrow a=4\).
e) \(x>1\Rightarrow\frac{13}{a-17}>1\Leftrightarrow\frac{13-a+17}{a-17}>0\Leftrightarrow\frac{30-a}{a-17}>0\Leftrightarrow17< a< 30\).
f) \(0< x< 1\Rightarrow0< \frac{13}{a-17}< 1\Leftrightarrow a-17>13\Leftrightarrow a>30\).
a) Để x là số hữu tỉ thì \(b-15\ne0\)
\(\Rightarrow b\ne15\)
b) Để x là số hữu tỉ dương thì \(b-15>0\)
\(\Rightarrow b>15\)
c) Để x là số hữu tỉ âm thì \(b-15< 0\)
\(\Rightarrow b< 15\)
e) Để x > 1 thì \(b-15< 12\)
\(\Leftrightarrow b< 12+15\)
\(\Rightarrow b< 27\)
\(1)\)
Để \(\frac{13}{a-1}\) là số nguyên thì \(13⋮\left(a-1\right)\)\(\Rightarrow\)\(\left(a-1\right)\inƯ\left(13\right)\)
Mà \(Ư\left(13\right)=\left\{1;-1;13;-13\right\}\)
Suy ra :
\(a-1\) | \(1\) | \(-1\) | \(13\) | \(-13\) |
\(a\) | \(2\) | \(0\) | \(14\) | \(-12\) |
Vậy \(a\in\left\{2;0;14;-12\right\}\)
\(2)\)
Ta có :
\(\frac{x}{5}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
Do đó :
\(\frac{x}{5}=2\Rightarrow x=2.5=10\)
\(\frac{y}{3}=2\Rightarrow y=2.3=6\)
Vậy x=10 và y=6
ta có :
\(\hept{\begin{cases}-x^2-3< 0\\-\left(x-1\right)^2-5< 0\end{cases}\forall x\Rightarrow A>0}\forall x\)
hơn nữa nếu x hữu tỉ thì A hữu tỉ
khi đó A là số hữu tỉ dương
\(\frac{x-5}{x-10}=\frac{x-10+5}{x-10}=1+\frac{5}{x-1}\)
Để \(\frac{x-5}{x-10}>0\) thì \(1+\frac{5}{x-1}>0\)
\(\Rightarrow\frac{5}{x-10}>-1\)\(\Rightarrow\begin{cases}x-10>0\\x-10< -5\end{cases}\)\(\Rightarrow\begin{cases}x>10\\x< 5\end{cases}\)
Vậy x > 10 hoặc x < 5
\(\frac{x-5}{x-10}>0\Leftrightarrow\)\(\begin{cases}x-5>0\\x-10>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x>5\\x>10\end{cases}\) \(\Leftrightarrow x>10\)
hoặc \(\begin{cases}x-5< 0\\x-10< 0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x< 5\\x< 10\end{cases}\) \(\Leftrightarrow x< 5\)
Vậy x > 10 hoặc x < 5 thì \(\frac{x-5}{x-10}>0\)