Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi p/s trên là S
\(\Rightarrow\) \(S=\frac{\left(42-15\right)-\left(x-15\right)}{x-15}=\frac{27}{x-15}-\frac{x-15}{x-15}=\frac{27}{x-15}-1\)
Mà \(x\in Z\)\(\Rightarrow\) \(MinS< 0\)
\(\Rightarrow\) \(\frac{27}{x-15}=-27\Rightarrow x-15=-1\Rightarrow x=14\)
Khi đó , \(MinS=\frac{42-14}{14-15}=\left(-27\right)-1=\left(-28\right)\)
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
\(E=\frac{-x+5}{x-2}=\frac{-x}{x}+\frac{5}{x-2}=\frac{5}{x-2}-1\)
Để E đạt GTNN thì \(\frac{5}{x-2}\)cũng phải nhỏ nhất
=>x-2 là số nguyên âm lớn nhất
=>x-2=-1
x=1
Vậy Min C=-6 và x=1
\(\frac{5-x}{x-2}=\frac{5-x-2+2}{x-2}=\frac{5-2-x+2}{x-2}=\frac{\left(5-2\right)-\left(x-2\right)}{x-2}=\frac{5-2}{x-2}-\frac{x-2}{x-2}=\frac{3}{x-2}-1\)
Để \(\frac{5-x}{x-2}\)lớn nhất thì \(\frac{3}{x-2}\)lớn nhất. do đó x-2 nhỏ nhất và \(x-2\ge0\) \(\Rightarrow x-2=1\Rightarrow x=3\)
Vậy khi x=3 thì E đạt giá trị lớn nhất là \(\frac{5-3}{3-2}=\frac{2}{1}=2\)
Ta có:
\(C=\frac{3x-19}{x-4}=\frac{3x-12-7}{x-4}=\frac{3\left(x-4\right)-7}{x-4}=3-\frac{7}{x-4}\)
Để C đạt GTNN
=>\(3-\frac{7}{x-4}\) phải nhỏ nhất
=>\(\frac{7}{x-4}\) phải lớn nhất (vì 3 không đổi)
=> x-4 phải nhỏ nhất và x-4 > 0 (vì 7 không đổi và x-4 là mẫu số)
=> x-4=1
=>x=1+4
=>x=5
khi đó:
\(C=\frac{3x-19}{x-4}=\frac{3\cdot5-19}{5-4}=-\frac{4}{1}=-4\)
Vậy GTNN của C là -4 đạt được khi x=5
\(C=\frac{3x-19}{x-4}=\frac{3\left(x-4\right)-7}{x-4}=\frac{3\left(x-4\right)}{x-4}-\frac{7}{x-4}=3-\frac{7}{x-4}\)
3-7/x-4 lớn nhất khi 7/x-4 nhỏ nhất
7/x-4 nhỏ nhất khi x-4 lớn nhất
=> x-4=7
=> x=11
a: Để A nhỏ nhất thì 6-x=-1
=>x=6+1=7
b: \(B=\dfrac{-x+3+5}{x-3}=-1+\dfrac{5}{x-3}\)
Để B lớn nhất thì x-3=1
=>x=4
a ) Để \(A\in Z\) thì \(17-x\inƯ\left(13\right)\)
\(\Rightarrow17-x\in\left\{1;-1;13;-13\right\}\)
\(\Rightarrow x\in\left\{16;18;4;30\right\}\)
b )
b) Để A đạt GTLN thì \(17-x\) đạt giá trị dương nhỏ nhất. Do đó \(17-x=1\)
\(\Rightarrow x=16\)
Để A đạt GTNN thì \(17-x\) đạt giá trị âm lớn nhất. Do đó \(17-x=-1\)
\(\Rightarrow x=18\)
\(M=\frac{42-x}{x-15}=\frac{-\left(x-15\right)+27}{x-15}=-1+\frac{27}{x-15}\)
Để \(M\in Z\Leftrightarrow x-15\inƯ\left(27\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Mà để M min \(\Leftrightarrow\frac{27}{x-15}\) min \(\Leftrightarrow x-15\) max \(\Leftrightarrow x-15=9\Leftrightarrow x=24\)
Vậy \(Min_M=-1+\frac{27}{9}=2\Leftrightarrow x=24\)
x = (-1)