K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

a) ta có: A=\(\frac{21x+3}{7x+1}=\frac{3\left(7x+1\right)}{7x+1}=3\)   với x khác -1/7

Vâỵ vs mọi gt trị của x thuộc Z (x khác -1/7) thì A mang gt nguyên

b)ta có: B=\(\frac{3x+2}{2x+3}\)  => 2B=\(\frac{3\left(2x+3\right)-5}{2x+3}=3-\frac{5}{2x+3}\)

để B có giá trị nguyên <=>2B có gt nguyên <=> \(\frac{5}{2x+3}\) có gt nguyên<=> 2x+3 là các ước nguyên của 5

Ư(5)={-5 ; -1 ; 1 ; 5}

ta có bảng:

2x+3-5-115
x-4-2-11

Vậy với x={-4 ; -2 ; -1 ; 1} thì B nguyên

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

Bài 1: Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).Bài 2: Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.Bài 3: Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng...
Đọc tiếp

Bài 1: 

Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).
Bài 2:

 Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.
Bài 3:

 Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng a, b.
Bài 4: 
a)Tìm tất cả các số nguyên n sao cho :\(n^4+2n^3+2n^2+n+7\) là số chính phương.
b)Tìm nghiệm nguyên của của phương trình:x2+xy+y2=x2y2
Bài 7:

 Chứng minh rằng : (x-1)(x-3)(x-4)(x-6) + 10 > 0   \(\forall x\)
Bài 8:

 Cho x≥0, y≥0, z≥0 và x+y+z=1. Chứng minh rằng:\(xy+yz+zx-2xyz\le\frac{7}{27}\)
Bài 9: Cho biểu thức:
P=\(\left(\frac{2x-3}{4x^2-12x+5}+\frac{2x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-8x^2}{4x^2+4x-3}+1\)
a) Rút gọn P
b) Tính giá trị của P khi |x|=\(\frac{1}{2}\)
c) Tìm giá trị nguyên của x để P nhận giá trị nguyên.
d) Tìm x để P>0
Bài 10: 

Một người đi xe gắn máy từ A đến B dự định mất 3 giờ 20 phút. Nếu người ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Tính khoảng cách AB và vận tốc dự định đi của người đó.
Bài 11: Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Bài 11: Cho biểu thức: 

\(A=\left[\frac{2}{3x}+\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
a) Rút gọn biểu thức A
b) Tìm giá trị nguyên của x để A nhận giá trị nguyên.

0
7 tháng 12 2016

bài dễ như thế mà còn hỏi nữa

1 tháng 1 2019

Câu 1:

\(Tacó\)

\(\frac{2}{2x-1}+\frac{4x^2+1}{4x^2-1}-\frac{1}{2x+1}=\frac{2}{2x-1}+\frac{4x^2+1}{\left(2x+1\right)\left(2x-1\right)}-\frac{1}{2x+1}\)

\(=\frac{4x+2}{\left(2x+1\right)\left(2x-1\right)}+\frac{4x^2+1}{\left(2x+1\right)\left(2x-1\right)}-\frac{2x-1}{\left(2x+1\right)\left(2x-1\right)}\)

\(=\frac{4x+2+4x^2+1-2x+1}{\left(2x+1\right)\left(2x-1\right)}=\frac{2x\left(2x+1\right)+4}{\left(2x+1\right)\left(2x-1\right)}=\frac{2x+4}{2x-1}\)

\(b,x=\frac{1}{2}\Rightarrow2x-1=0\left(loại\right)\)

..... 2 câu sau easy

1 tháng 12 2017

a) có  ( 2x + 3) : (x +1) = (2x + 2 + 1): (x+1) 

                                     = 2 + 1: (x+1)

Để biểu thức đã cho là số nguyên thi 1: ( x+1) phải nguyên

=> ( x +1) thuộc ư(1) =( -1,1)

=> x=-2 hoặc x=0

10 tháng 4 2020

a) A= \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\)

\(ĐK:3x^2-7x+2\ne0\)

\(\Leftrightarrow\orbr{\begin{cases}x\ne\frac{1}{3}\\x\ne2\end{cases}\left(^∗\right)}\)

=> 3x+ 5x + 2 =0

<=> 3x2 + 3x + 2x +2 = 0

<=> 3x .( x + 1 ) + 2 .( x + 1 ) =0

<=> (  x + 1 )(3x + 2 ) =0

<=> \(\orbr{\begin{cases}x+1=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{-2}{3}\left(t/m\left(^∗\right)\right)\end{cases}}}\)

Vậy x = -2/3 

b) \(B=\frac{2x^2+10x+12}{x^3-4x}=0\left(ĐK:x\ne0;x^2\ne4\Leftrightarrow x\ne0;x\ne\pm2\right)\)

<=> 2x2+ 10x + 12 = 0

<=> x2 + 5x+ 6 =0

<=> ( x + 2 ) ( x + 3 ) =0\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=-3\left(t/m\right)\end{cases}}\) 

Vậy x = -3 

c)\(C=\frac{x^3+x^2-x-1}{x^3+2x-5}=0\)                         \(ĐK:x^3+2x-5\ne0\left(^∗\right)\)

<=> x3 + x2 -x -1 =0

<=> ( x - 1 )(x2 + 2x + 1 ) 

<=> ( x-1 ) (x+1)2 = 0

<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(t/m\left(^∗\right)\right)\\x=-1\left(t/m\left(^∗\right)\right)\end{cases}}}\)

Vậy x = { 1 ; -1 }

11 tháng 4 2020

a) A = \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\) (ĐKXĐ: x khác 1/3, x khác 2)

<=> 3x^2 + 5x - 2 = 0

<=> (3x - 1)(x + 2) = 0

<=> 3x - 1 = 0 hoặc x + 2 = 0

<=> 3x = 1 hoặc x = -2

<=> x = 1/3 (ktm) hoặc x = -2 (tm)

=> x = -2

b) B = \(\frac{2x^2+10x+12}{x^3-4x}=0\) (ĐKXĐ: x khác 0, x khác +-2)

<=> \(\frac{2\left(x^2+5x+6\right)}{x\left(x^2-4\right)}=0\)

<=> \(\frac{2\left(x+2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{2\left(x+3\right)}{x\left(x-2\right)}=0\)

<=> 2(x + 3) = 0

<=> x + 3 = 0

<=> x = -3

c) C = \(\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) (ĐKXĐ: x khác x^3 + 2x - 5)

<=> \(\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}=0\)

<=> \(\frac{\left(x+1\right)\left(x^2-1\right)}{x^3+2x-5}=0\)

<=> \(\frac{\left(x+1\right)\left(x-1\right)\left(x+1\right)}{x^3+2x-5}=0\)

<=> (x + 1)(x - 1) = 0

<=> x + 1 = 0 hoặc x - 1 = 0

<=> x = -1 hoặc x = 1