Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\frac{2}{\sqrt{x}-3}+\frac{2\sqrt{x}}{x-4\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(A=\frac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}\)
\(b,A=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)
để A nguyên \(5⋮\sqrt{x}-3\)
lập bảng ra đc
\(x=\left\{2\right\}\)
Mạn phép xin sửa đề bài này thành tìm x nguyên ạ; nếu sai sót xin ib để lm lại:)
a) đk: \(x\ge0\)
+ Nếu: x không là số chính phương => A vô tỉ (loại)
+ Nếu: x là số chính phương => \(\sqrt{x}+2\) là số nguyên
Khi đó để A nguyên => \(\sqrt{x}+2\inƯ\left(8\right)\) , mà \(\sqrt{x}+2\ge2\left(\forall x\right)\)
=> \(\sqrt{x}+2\in\left\{2;4;8\right\}\Rightarrow\sqrt{x}\in\left\{0;2;6\right\}\Rightarrow x\in\left\{0;4;36\right\}\)
b) đk: \(x\ge0\)
Xét 2 TH như ở trên chứng minh x là số chính phương rồi làm như sau:
Ta có: \(B=\frac{\sqrt{x}+10}{\sqrt{x}+3}=1+\frac{7}{\sqrt{x}+3}\)
Để A nguyên => \(\frac{7}{\sqrt{x}+3}\inℤ\Rightarrow\sqrt{x}+3\inƯ\left(7\right)\)
Mà, \(\sqrt{x}+3\ge3\left(\forall x\right)\) => \(\sqrt{x}+3=7\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\)
a. \(\frac{8}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\in\left\{\pm8;\pm4;\pm2;\pm1\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{-10;-6;-4;-3;-1;0;2;6\right\}\)
Vì Vx lớn hơn hoặc bằng 0 \(\Rightarrow\sqrt{x}\in\left\{0;2;6\right\}\)
\(\Rightarrow x\in\left\{0;4;36\right\}\)
b. \(B=\frac{\sqrt{x}+10}{\sqrt{x}+3}=\frac{\sqrt{x}+3+7}{\sqrt{x}+3}=1+\frac{7}{\sqrt{x}+3}\)
Để B thuộc Z thì 7 / Vx + 3 thuộc Z
\(\Rightarrow\sqrt{x}+3\in\left\{\pm1;\pm7\right\}\)
Vì Vx lớn hơn hoặc = 0 với mọi x \(\Rightarrow\sqrt{x}=4\)
\(\Rightarrow x=16\)
c,d tương tự
B =\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\) + \(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)- \(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)( \(x\ge0\); \(x\ne2;3\))
= \(\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b, B = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)= \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)= \(1+\frac{4}{\sqrt{x}-3}\)
để B có gtri nguyên thì \(\frac{4}{\sqrt{x}-3}\)phải nguyên
\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilonƯ\left(4\right)\)
\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilon\left\{1;-1;2;-2;4;-4\right\}\)
ta có bảng sau
\(\sqrt{x}-3\) 1 -1 2 -2 4 -4
\(\sqrt{x}\) 4 2 5 1 7 -1 (L)
x 16 4 25 1 49
vậy x \(\varepsilon\){ 16 ; 4 ; 25; 1 ; 49 }
#mã mã#
\(A=\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(A=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}\)
\(A=1+\frac{5}{\sqrt{x}-2}\)
Để A nguyên\(\Leftrightarrow1+\frac{5}{\sqrt{x}-2}\)
mà 1 nguyên \(\Rightarrow\frac{5}{\sqrt{x}-2}\)nguyên
\(\sqrt{x}-2\in\text{Ư}\left(5\right)=5;-5;1;-1\)
Lập bảng là xong nhé
a) đk: \(x\ge0\)
Ta có:
+ Nếu: x không là số chính phương => A vô tỉ (loại)
+ Nếu: x là số chính phương => \(\sqrt{x}\) nguyên
Ta có: \(A=\frac{2\sqrt{x}+10}{\sqrt{x}-3}=\frac{\left(2\sqrt{x}-6\right)+16}{\sqrt{x}-3}=2+\frac{16}{\sqrt{x}-3}\)
Để A nguyên => \(\frac{16}{\sqrt{x}-3}\inℤ\Rightarrow\sqrt{x}-3\inƯ\left(16\right)\)
Mà \(\sqrt{x}-3\ge-3\left(\forall x\right)\Rightarrow\sqrt{x}-3\in\left\{-2;-1;1;2;4;8;16\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7;12;20\right\}\)
\(\Rightarrow x\in\left\{1;4;16;25;49;144;400\right\}\)
b) đk: \(x\ge0\)
Ta có:
+ Nếu: x không là số chính phương => A vô tỉ (loại)
+ Nếu: x là số chính phương => \(\sqrt{x}\) nguyên
Ta có: \(B=\frac{\sqrt{x}+8}{2\sqrt{x}+1}\Rightarrow2B=\frac{2\sqrt{x}+16}{2\sqrt{x}+1}=1+\frac{15}{2\sqrt{x}+1}\)
Để 2B nguyên => \(\frac{15}{2\sqrt{x}+1}\inℤ\Rightarrow2\sqrt{x}+1\inƯ\left(15\right)\)
Mà 1 lẻ nên để B nguyên => \(\frac{15}{2\sqrt{x}+1}\) lẻ, mặt khác: \(2\sqrt{x}+1\ge1\left(\forall x\right)\)
=> \(2\sqrt{x}+1\in\left\{1;3;5;15\right\}\Leftrightarrow2\sqrt{x}\in\left\{0;2;4;14\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;2;7\right\}\Rightarrow x\in\left\{0;1;4;49\right\}\)