Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) đk: \(x\ge-\frac{1}{2}\)
Ta có: \(\sqrt{2x+1}< 3\)
\(\Leftrightarrow2x+1< 9\)
\(\Leftrightarrow2x< 8\)
\(\Rightarrow x< 4\)
Vậy x < 4
b) đk: \(x\ge\frac{1}{3}\)
Ta có: \(\sqrt{3x-1}=\sqrt{x+2}\)
\(\Leftrightarrow\left|3x-1\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=x+2\\3x-1=-x-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=3\\4x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{4}\left(ktm\right)\end{cases}}\)
Vậy \(x=\frac{3}{2}\)
\(\sqrt{2x+1}< 3.\) ĐK: 2x+1 lớn hơn hoặc bằng 0 => x lớn hơn hoặc bằng -1/2
\(\Rightarrow\sqrt{2x+1}< \sqrt{9}\)
\(\Rightarrow2x+1< 9\)\(\Rightarrow x< 4\)
\(\Rightarrow-\frac{1}{2}\le x< 4\)
b/ \(\sqrt{3x-1}=\sqrt{x+2}\)( ĐK:x lớn hơn hoặc bằng 1/3)
\(\Rightarrow3x-1=x+2\)
\(\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\left(tm\right)\)
\(f\left(x\right)=x^2-2\left(m+5\right)x+m^2+4m-3=0\)
Phương trình cho có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow6m+28>0\Leftrightarrow m>-\frac{14}{3}\left(1\right)\)
ycbt\(\Leftrightarrow\hept{\begin{cases}-2< m+5< 4\\f\left(-2\right)>0\\f\left(4\right)>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-7< m< -1\\m^2+8m+21>0\\m^2-4m-27>0\end{cases}}\Leftrightarrow-7< m< 2-\sqrt{31}\left(2\right)\)
Từ (1),(2) suy ra \(-\frac{14}{3}< m< 2-\sqrt{31}.\)
\(a,ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
Sao phân số thứ 2 là \(\frac{1-2}{1+x}\) .Bạn chép đề thật chuẩn mới trả lời đúng nhé
\(\Leftrightarrow x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.1+1^2\right]+\left[\left(\sqrt{y-1}\right)^2+2.\sqrt{y-1}.1+1^2\right]+\left[\left(\sqrt{z-2}\right)^2+2.\sqrt{z-x}.1+1^2\right]-1+1=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{x}-1=0\)
\(\sqrt{y-1}-1=0\)
\(\sqrt{z-2}-1=0\)
\(\Leftrightarrow x=1;y=2;z=3\)
Áp dụng BĐT Bunhiacopski ta có:
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=3^2=9\)
\(\Rightarrow x^2+y^2+z^2\ge3\Rightarrow A\ge3\)
Dấu "=" xảy ra khi x=y=z=1
Vậy MinA=3 khi x=y=z=1
(Bạn Thắng Nguyễn, đề yêu cầu tìm \(max\) mà...)
Đây là bài bất đẳng thức khó, vì \(maxA=5\) và đẳng thức xảy ra tại \(x=0,y=1,z=2\) (chẳng có BĐT nào làm được hết).
Lời giải đây: Đặt \(A=f\left(x,y,z\right)=x^2+y^2+z^2\) (coi như đa thức 3 biến)
Trong \(x,y,z\) phải có số lớn hơn hoặc bằng 1, giả sử là \(x\). Khi đó \(y+z\le2\).
\(f\left(x,y+z,0\right)=x^2+\left(y+z\right)^2\ge x^2+y^2+z^2=f\left(x,y,z\right)\)
Mà \(f\left(x,y+z,0\right)=f\left(x,3-x,0\right)=x^2+\left(3-x\right)^2=2x^2-6x+9\)
Và biểu thức này đạt giá trị lớn nhất tại \(x=2\) (giải thích: \(2x^2-6x+9=2\left|x-\frac{3}{2}\right|^2+\frac{9}{2}\))
Nên \(f\left(x,y,z\right)\le f\left(2,1,0\right)=5\). Đẳng thức xảy ra tại \(x=2,y=1,z=0\).
Ta có: \(\frac{117}{37}< x< \frac{91}{13}\)
\(\Leftrightarrow3,162162...< x< 7\)
\(\Rightarrow x=4;5;6\). Vậy \(x=4;5;6\)Ủng hộ nha!
Lớp 9 ???
117/37=3+6/37<4
91/13=7
=> x=4,5,6