Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=x^2-x+2=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{7}{4}=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Vậy \(B_{min}=\frac{7}{4}\)\(\Leftrightarrow x=\frac{1}{2}\)
\(A=2x^2-3x+6=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}+\frac{39}{16}\right)\)
\(=2\left[\left(x-\frac{3}{4}\right)^2+\frac{39}{16}\right]\ge\frac{39}{8}\)
Vậy \(A_{min}=\frac{39}{8}\Leftrightarrow x=\frac{3}{4}\)
Tìm giá trị nhỏ nhất :
A = 3x2 - x + 1
GTNN cuả A là \(\frac{1}{6}\)
B = 9x2 - x + 3
GTNN cuả A là \(\frac{1}{18}\)
Study well
\(A=3\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{1}{4}\)
\(=3\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Vậy \(Min_A=\frac{1}{4}\) khi và chỉ khi x=1/2
\(B=9\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{3}{4}\)
=\(9\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vay \(Min_B=\frac{3}{4}\)khi và chỉ khi x=3/4
\(A=3x^2-x+1\)
\(\Leftrightarrow A=3x^2-x+\frac{1}{12}+\frac{11}{12}\)
\(\Leftrightarrow A=\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}+\frac{11}{12}\)
Vì \(\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}\ge0\)nên \(\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}+\frac{11}{12}\ge\frac{11}{12}\)
Vậy \(A_{min}=\frac{11}{12}\Leftrightarrow x=0\)
\(B=\frac{3x+4}{x-3}\inℤ\left(x\ne3\right)\)
\(\Rightarrow3x+4⋮x-3\)
\(\Rightarrow3x-9+13⋮x-3\)
\(\Rightarrow3\left(x-3\right)+13⋮x-3\)
Ta có: \(3\left(x-3\right)⋮x-3\)
\(\Rightarrow13⋮x-3\)
\(\Rightarrow x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\Rightarrow x\in\left\{4;2;16;-10\right\}\)