K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

a) \(x^2-2=0\)

\(\Rightarrow x^2-\left(\sqrt{2}\right)^2=0\)

\(\Rightarrow\left(x-\sqrt{2}\right).\left(x+\sqrt{2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\x+\sqrt{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+\sqrt{2}\\x=0-\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}.\)

b) \(x^2+\frac{7}{4}=\frac{23}{4}\)

\(\Rightarrow x^2=\frac{23}{4}-\frac{7}{4}\)

\(\Rightarrow x^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{2;-2\right\}.\)

c) \(\left(x-1\right)^2=0\)

\(\Rightarrow\left(x-1\right)^2=0^2\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=0+1\)

\(\Rightarrow x=1\)

Vậy \(x=1.\)

g) \(\sqrt{x}=0\)

\(\Rightarrow x=0\)

Vậy \(x=0.\)

h) \(\sqrt{x}=4\)

\(\Rightarrow\sqrt{x}=\left(\sqrt{4}\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{16}\)

\(\Rightarrow x=16\)

Vậy \(x=16.\)

i) \(\sqrt{x}-\frac{1}{7}=0\)

\(\Rightarrow\sqrt{x}=0+\frac{1}{7}\)

\(\Rightarrow\sqrt{x}=\frac{1}{7}\)

\(\Rightarrow\sqrt{x}=\left(\sqrt{\frac{1}{7}}\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{\frac{1}{49}}\)

\(\Rightarrow x=\frac{1}{49}\)

Vậy \(x=\frac{1}{49}.\)

Chúc bạn học tốt!

17 tháng 10 2019

Số thực

a: \(\Leftrightarrow4x+\dfrac{3}{4}=2\cdot\dfrac{2}{5}+0.01\cdot10=\dfrac{9}{10}\)

=>4x=3/20

hay x=3/80

b: \(\Leftrightarrow\left|x\right|=4+\dfrac{1}{8}-9=-\dfrac{39}{8}\)(vô lý)

c: 2x(x-2/3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

d: \(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)

=>259-7x=3x+39

=>-10x=-220

hay x=22

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)

9 tháng 10 2016

CÁC câu này cứ bình phương 2 vế là ra ấy mà 

18 tháng 9 2019

1) \(\frac{1}{3}x-\frac{2}{5}=\frac{1}{3}\)

\(\frac{1}{3}x=\frac{1}{3}+\frac{2}{5}\)

\(\frac{1}{3}x=\frac{11}{15}\)

\(x=\frac{11}{15}:\frac{1}{3}\)

\(x=\frac{11}{5}\)

Vậy \(x=\frac{11}{5}.\)

2) \(2,5:7,5=x:\frac{3}{5}\)

\(\frac{5}{2}:\frac{15}{2}=x:\frac{3}{5}\)

\(\frac{1}{3}=x:\frac{3}{5}\)

\(x=\frac{1}{3}.\frac{3}{5}\)

\(x=\frac{1}{5}\)

Vậy \(x=\frac{1}{5}.\)

4) \(\left|x\right|+\left|x+2\right|=0\)

Có: \(\left\{{}\begin{matrix}\left|x\right|\ge0\\\left|x+2\right|\ge0\end{matrix}\right.\forall x.\)

\(\left|x\right|+\left|x+2\right|=0\)

\(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=0\\x=0-2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vô lí vì \(x\) không thể nhận cùng lúc 2 giá trị khác nhau.

\(x\in\varnothing\)

Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.

10) \(5-\left|1-2x\right|=3\)

\(\left|1-2x\right|=5-3\)

\(\left|1-2x\right|=2\)

\(\left[{}\begin{matrix}1-2x=2\\1-2x=-2\end{matrix}\right.\)\(\left[{}\begin{matrix}2x=1-2=-1\\2x=1+2=3\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\left(-1\right):2\\x=3:2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}.\)

Chúc bạn học tốt!

18 tháng 9 2019

9, \(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)

\(\frac{40}{3}:\frac{4}{3}=26:\left(2x-1\right)\)

\(10=26:\left(2x-1\right)\)

\(2x-1=26:10\)

\(2x-1=2,6\)

\(2x=2,6+1\)

\(2x=3,6\)

\(x=3,6:2\)

\(x=1,8\)

5 tháng 10 2018

4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)

\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)

Tìm z thì dễ rồi

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D

20 tháng 12 2018

a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)

\(\frac{1}{3}:2x=\frac{-21}{4}\)

\(2x=\frac{-4}{63}\)

\(x=\frac{2}{63}\)

20 tháng 12 2018

b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)

Vậy.........

2 tháng 8 2017

\(1.\sqrt{x-1}=2\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=5\)

Vậy \(x=5.\)

\(2.\sqrt{3-x}=1\)

\(\Rightarrow3-x=1\)

\(\Rightarrow x=2\)

\(3.\left|x-1\right|+\left|x^2-1\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=0\\\left|x^2-1\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\x^2=1\end{matrix}\right.\)

\(\Rightarrow x=1\)

\(4.\left|2x-3\right|-\left|x-1\right|=0\)

\(\Rightarrow\left|2x-3\right|=\left|x-1\right|\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=x-1\\2x-3=-x+1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-x=3-1\\2x+x=3+1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=2\\x=\dfrac{4}{3}\end{matrix}\right..\)