Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên)
39.k+14=37.k+2.k+14 chia cho 37 dư 1
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên)
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên )
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1
2.k+14=38
2.k=38-14=24
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482
Theo đề bài ta có :
â : 37 dự 1 => 3a : 37 dư 3
a : 39 dư 14 => 3a : 39 dư 3
=> 3a + 3 chia hết cho 37 và 39
=> 3a + 3 thuộc BCNN(37 ; 39)
Ta có :
BCNN(37 ; 39) = 1443
=> 3a + 3 = 1443
=> 3a = 1440
=> a = 480
Ta có: n+1 chia hết cho 165
=> n+1 thuộc B(165) = { 0 ; 165;330;495;660.....}
=> n = { -1 ; 164 ; 329 ; 494;659;............}
Vì n chia hết cho 21
=> n =
a) Vì \(x\ge0\) nên \(2x+1\ge1\)
55 chia hết cho 2x+1 nên 2x+1 là ước tự nhiên lẻ của 55.
Vậy 2x+1 = 1;5;11;55
=> x=0;2;5;27
b)