Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2x+1⋮x-2\)
\(=>2.\left(x-2\right)+5⋮x-2\)
Do \(2.\left(x-2\right)⋮x-2\)
\(=>5⋮x-2\)
\(=>x-2\inƯ\left(5\right)\)
Nên ta có bảng sau :
x-2 | 1 | 5 | -1 | -5 |
x | 3 | 7 | 1 | -3 |
Vậy ...
\(b,3x+5⋮x\)
Do \(3x⋮x=>5⋮x\)
\(=>x\inƯ\left(5\right)\)
Nên ta có bảng sau :
x | 1 | 5 | -1 | -5 |
Vậy ...
\(c,4x+1⋮2x+3\)
\(=>2.\left(2x+3\right)-5⋮2x+3\)
Do \(2.\left(2x+3\right)⋮2x+3\)
\(=>5⋮2x+3\)
\(=>2x+3\inƯ\left(5\right)\)
Nên ta có bảng sau :
2x+3 | 1 | 5 | -1 | -5 |
2x | -2 | 2 | -4 | -8 |
x | -1 | 1 | -2 | -4 |
Vậy ...
a) Ta có: 2x+1=2(x-2)+5
Để 2x+1 chia hết cho x-2 thì 2(x-2)+5 chia hết cho x-2
Vì 2(x-2) chia hết cho x-2
=> 5 chia hết cho x-2
Vì x thuộc Z => z-2 thuộc Ư (5)={-5;-1;1;5}
Nếu x-2=-5 => x=-3
Nếu x-2=-1 => x=1
Nếu x-2=1 => x=3
Nếu x-1=5 => x=6
b) Ta có 3x chia hết cho x với mọi x
=> Để 3x+5 chia hết cho x thì 5 chia hết cho x
Vì x thuộc Z => x thuộc Ư (5)={-5;-1;1;5}
c) Ta có: 4x+11=2(2x+3)+5
Để 4x+11 chia hết cho 2x+3 thì 2(2x+3)+5 chia hết cho 2x+3
Vì 2(2x+3) chia hết cho 2x+3 => 5 chia hết cho 2x+3
Vì x thuộc Z => 2x+3 thuộc Ư (5)={-5;-1;1;5}
Nếu 2x+3=-5 => 2x=-8 => x=-4
Nếu 2x+3=-1 => 2x=-4 => x=-2
Nếu 2x+3=1 => 2x=-2 => x=-1
Nếu 2x+3=5 => 2x=2 => x=1
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
a, Ta có: x+6 chia hết cho x
=> x chia hết cho x
<=> x e Ư(6) = { 1;2;3;6}
+, Nếu x + 6 = 1
<=> x = 5
+, Nếu x + 6 = 2
<=> x = 4
+, Nếu x + 6 = 3
<=> x = 3
+, Nếu x+6 = 6
<=> x = 0
Vậy x e { 5;4;3}
a ) 2x + 5 chia hết cho x + 1
2x + 2 + 3 chia hết cho x + 1
( 2x + 2 ) + 3 chia hết cho x + 1
2x + 2 chia hết cho x + 1 với mọi x . Vậy 3 chia hết cho x + 1
=> x + 1 thuộc Ư( 3)
=> x + 1 thuộc { 1 ; 3 }
Với x + 1 = 1
x = 1 - 1
x = 0
Với x + 1 = 3
x = 3 - 1
x = 2
Vậy x thuộc { 0 ; 2 }
b ) 3x + 15 chia hết cho x + 2
3x + 6 + 9 chia hết cho x + 2
( 3x + 6 ) + 9 chia hết cho x + 2
3x + 6 chia hết cho x + 2 với mọi x . Vậy 9 chia hết cho x + 2
=> x + 2 thuộc Ư( 9 )
=> x + 2 thuộc { 1 ; 3 ; 9 }
Với x + 2 = 1
x = 1 - 2 ( loại )
Với x + 2 = 3
x = 3 - 2
x = 1
Với x + 2 = 9
x = 9 - 2
x = 7
Vậy x thuộc { 1 ; 7 }
c ) 4x + 22 chia hết cho 2x - 1
4x - 2 + 24 chia hết cho 2x - 1
4x - 2 chia hết cho 2x - 1 với mọi x . Vậy 24 chia hết cho 2x - 1
=> 2x - 1 thuộc Ư(24)
=> 2x - 1 thuộc { 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 )
Với 2x - 1 = 1
2x = 1 + 1
2x = 2
x = 2 : 2
x = 1
....
Với 2x - 1 = 24
2x = 24 + 1
2x = 25
x = 25 : 2 ( loại )
Vậy x thuộc { 1 ; 2 }
đề sai hay sao ấy bn ạ, mình sẽ phân tích cho bn xem nhá
4x + 11 = (3x + 1) + (x + 10)
3x + 1 chia hết cho 3x + 1
vậy x + 10 phải chia hết cho 3x + 1
mà bn thấy nhé, x và 10 phải chia hết 3x + 1
mà x đã ko chia hết cho 3x + 1 nhá, nên mình nghĩ là đề sai đấy bn ạ, nếu mình sai thì để mình tính lại, có thể mình hoặc đề sai, mình sẽ xem lại bn nhá
kho..................lam............................tich,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,minh..........................troi........................ret............................wa.................ung ho minh.................hu....................hu..............hu................hat..............hat....................s
Ta có: \(\frac{3x+5}{3x+1}=\frac{3x+1+4}{3x+1}=1+\frac{4}{3x+1}\)
Để \(\left(3x+5\right)⋮\left(3x+1\right)\)thì \(4⋮3x+1\)
\(\Rightarrow3x+1\inƯ\left(4\right)\)
\(\Rightarrow3x+1\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow3x\in\left\{0;1;3;-2;-3;-5\right\}\)
\(\Rightarrow x\in\left\{0;\frac{1}{3};1;-\frac{2}{3};-1;-\frac{5}{3}\right\}\)
Mà \(x\in N\Rightarrow x\in\left\{0;1;-1\right\}\)
b, Ta có: \(\frac{4x+11}{x-3}=\frac{4x-12+23}{x-3}=\frac{4\left(x-3\right)+23}{x-3}=4+\frac{23}{x-3}\)
Để \(\left(4x+11\right)⋮\left(x-3\right)\)thì \(23⋮x-3\)
\(\Rightarrow x-3\inƯ\left(23\right)\)
\(\Rightarrow x-3\in\left\{1;23;-1;-23\right\}\)
\(\Rightarrow x\in\left\{4;26;2;-20\right\}\)
Mà \(x\in N\Rightarrow x\in\left\{4;26;2\right\}\)
a) 3x+5 chia hết cho 3x+1
=> 3x+1+4 chia hết cho 3x+1
=> (3x+1)+4 chia hết cho 3x+1
=> 3x+1 chia hết cho 3x+1 ; 4 chia hết cho 3x+1
=> 3x+1 thuộc Ư(4)={1,2,4}
=> x thuộc {0,1} (thõa mãn đk thuộc N)
b) 4x+11 chia hết cho x-3
=> 4x-12+23 chia hết cho x-3
=> 4(x-3)+23 chia hết cho x-3
=> 4(x-3) chia hết cho x-3 ; 23 chia hết cho x-3
=> x-3 thuộc Ư(23)={1,23}
=> x thuộc {4,26} ( thõa mãn đk thuộc N)